Profiles

Sture Hansson

Sture Hansson

Professor emeritus

View page in English
Arbetar vid Institutionen för ekologi miljö och botanik
Telefon 08-16 42 48
E-post sture.hansson@su.se
Besöksadress Svante Arrhenius väg 20 A
Rum N 504
Postadress Institutionen för ekologi miljö och botanik 106 91 Stockholm

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2019. Sture Hansson, Ulf Larsson, Jakob Walve. Estuarine, Coastal and Shelf Science 226

    Perch (Perca fluviatilis) and roach (Rutilus rutilus) are among the more common coastal fish species in the Baltic Sea. They are often targeted in environment monitoring programs as well as in ecological research, in which knowledge of their basic biology, including migration and feeding ranges, are needed in the sampling design and for interpretation of data. Body condition (length-mass relationship) differences between stations separated by at most a few kilometres show that both species are reasonably sedentary even in areas without obvious migration barriers. Collecting representative samples, even from a reasonably small water body, may thus require careful planning.

  • 2018. Brian P. O'Malley (et al.). Limnology and Oceanography 16 (12), 868-880

    The application of remote video technologies can provide alternative views of in situ behavior and distribution of aquatic organisms that might be missed with traditional net‐based techniques. We describe a remote benthic video camera system designed to quantify epibenthic density of the macroinvertebrate Mysis diluviana. We deployed the camera multiple times during the day and night at a 60‐m depth site in Lake Champlain and quantified Mysis density from the footage using basic methods and readily available software. Density estimates from the video were on average 43 times higher than concurrent estimates from benthic sled tows, suggesting sleds may be inefficient at sampling mysids. Deployment caused initial scattering of individuals, resulting in low densities immediately after deployment that slowly increased. On some occasions, Mysis densities on video fluctuated greatly over several hours, consistent with organisms that have a patchy distribution on the lake bottom. The camera system provided novel insights on behavior and distribution of Mysis on benthic habitats, demonstrating potential for use as a tool to study partial diel vertical migration and predator–prey interactions.

  • 2018. Sture Hansson (et al.). ICES Journal of Marine Science 75 (3), 999-1008

    Seals and fish-eating birds have increased in the Baltic Sea and there is concern that they compete with fisheries. Using data from around year 2010, we compare consumption of different fish species by seals and birds to the catch in the commercial and recreational fishery. When applicable this is done at the geographical resolution of ICES subdivisions. Predation by birds and mammals likely has limited impact on the populations of the commercially most important species (herring, sprat, and cod). In the central and southern Baltic, seals and birds consume about as much flatfish as is caught by the fishery and competition is possible. Birds and seals consume 2-3 times as much coastal fish as is caught in the fishery. Many of these species are important to the fishery (e. g. perch and whitefish) and competition between wildlife and the fishery is likely, at least locally. Estimated wildlife consumption of pike, sea trout and pikeperch varies among ICES subdivisions and the degree of competition for these species may differ among areas. Competition between wildlife and fisheries need to be addressed in basic ecosystem research, management and conservation. This requires improved quantitative data on wildlife diets, abundances and fish production.

  • 2018. Brian P. O'Malley, Sture Hansson, Jason D. Stockwell. Journal of Plankton Research 40 (1), 66-76

    Mysids are known for benthic-pelagic diel vertical migration (DVM), where the population is benthic by day and pelagic by night. However, historical and recent observations in members of the Mysis relicta complex suggests populations exhibit partial DVM, with some remaining benthic at night. We used pelagic net and benthic sled tows to assess diel habitat use by Mysis diluviana at two stations (60 and 100 m deep) in Lake Champlain, USA, during June-November 2015. At both stations, mysids were on the bottom both day and night, but the extent of pelagic habitat use by Mysis varied by site depth. At 60-m, pelagic densities were an order of magnitude lower during the day compared to at night, indicative of benthic-pelagic DVM. Contrary to expectations, we found no diel difference between pelagic and benthic sled density estimates at 100-m, suggesting an equal number of Mysis are benthic day and night, and an equal number are pelagic-day and night at deeper sites. Mean body length of benthic-caught mysids was greater than pelagic-caught individuals, a pattern that was evident both day and night at 100-m. Our findings indicate Mysis partial DVM is common across seasons and influenced by body size and depth.

Visa alla publikationer av Sture Hansson vid Stockholms universitet

Filer

Senast uppdaterad: 11 mars 2020

Bokmärk och dela Tipsa