Profiles

Karim Hamza 2

Karim Hamza

Universitetslektor

View page in English
Arbetar vid Institutionen för matematikämnets och naturvetenskapsämnenas didaktik
Telefon 08-120 766 06
E-post karim.hamza@mnd.su.se
Besöksadress Svante Arrheniusväg 20 A, E-huset, Arrheniuslab
Rum E 367
Postadress Institutionen för matematikämnets och naturvetenskapsämnenas didaktik 106 91 Stockholm

Forskning

Min forskning handlar om att utveckla empiriskt grundade didaktiska modeller och andra verktyg som lärare i naturvetenskap kan använda sig av i sin dagliga verksamhet. Detta kan vara allt ifrån beskrivningar av vilka erfarenheter elever eller universitetsstudenter behöver göra för att lära sig ett visst innehåll, via begreppsliga ramverk för att planera, genomföra och utvärdera undervisning, till hypoteser om hur olika syften med undervisningen kan nås genom olika sätt att organisera den på.

Att modellerna och verktygen är empiriskt grundade innebär

(1) att de bygger på detaljerade analyser av undervisning samt

(2) att de testas och förfinas i nära samarbete med lärare.

I RiskEdu-projektet, som finansieras av Marcus och Amalia Wallenbergs minnesfond, försöker forskare och gymnasielärare tillsammans generera kunskap om hur gymnasiets biologi- och fysikundervisning kan stärka elevers förmåga till riskbedömning och ställningstaganden i kontroversiella samhällsfrågor med ett naturvetenskapligt innehåll, som strålning och bioteknik. Via ett antal på varandra följande undervisningscykler vill vi successivt utveckla konkreta verktyg och mer övergripande principer för undervisning om risk och riskbedömning inom dessa naturvetenskapliga områden. RiskEdu-projektet bygger bland annat på kunskaper från det avslutade VR-projektet TALES avseende hur lärares undervisningspraktik förändras i mötet med nya didaktiska verktyg, liksom hur verktygen behöver förfinas för att bättre fungera i verksamheten.

I projektet Undervisningstraditioner och lärande, som leds från Uppsala universitet, modellerar jag undervisning tillsammans med kollegor i Uppsala utifrån vederagna modeller för att välja syften och innehåll i undervisningen. Vi försöker också modifiera och vidareutveckla modellerna i samarbete med lärare.

Utöver dessa projekt, vilka är inriktade mot grundskolans och gymnasiets naturvetenskapsundervisning, bedriver jag tillsammans med doktoranderna Ilana Kaufmann och Matti Karlström två projekt som riktar sig mot undervisning på universitetet. Ilanas projekt handlar om hur studenter i kemi etablerar kontinuitet mellan undervisningens olika delar, och hur universitetslärare kan hjälpa studenterna med detta. Matti studerar hur lärarstudenter resonerar om planering av undervisning samt hur de successivt lär sig att reflektera över dessa och andra delar av sin praktik.

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2014. Iann Lundegård, Karim M. Hamza. Science Education 98 (1), 127-142

    This article addresses the problem of treating generalizations of human activity as entities and structures that ultimately explain the activities from which they were initially drawn. This is problematic because it involves a circular reasoning leading to unwarranted claims explaining the originally studied activities of science teaching and learning. Unlike other fields within social science research, this problem has not been appreciated and discussed in the science education literature and the field thus needs to be reminded of it. A heuristic specifically developed for the purposes of this article is applied to two examples taken from a much-cited research in the field. Through the examples it is argued that the practice of creating entities out of generalizations of science classroom activities leads to a number of unintended consequences. It is further argued that the stated purposes in the two example articleswould actually have been better served by investigating the entire processes through which the activities develop, as well as how the activities may change through teaching. The article concludes that through the search for explanations caused by underlying entities, science education research runs a risk of alienating its results from the activities from which it initially wanted to meliorate.

  • 2013. Karim Hamza. Research in science education 43 (4), 1477-1499

    In this article, I make a case for the potential educative worth of distractions for learning science in the school laboratory. Distractions are operationalized as experiences lying outside the main purpose of the laboratory activity, thereby diverting students’ attention from that purpose. Through a practical epistemology analysis, I examined in close detail the conversations of three groups of high school students trying to explain how a real galvanic cell works. The three groups experienced the same two distractions, (1) a nonworking light-emitting diode and (2) negative readings on a voltmeter. The analysis reveals how one of the groups, through a series of contingencies, successively made the two distractions continuous with the main purpose of the activity. In the remaining two groups, no such continuity was established. The results show that (a) experiences initially being distracting, perplexing, and confusing may indeed acquire significance for the students’ possibilities of coping with the main purpose of the activity but that (b) the outcome is highly contingent on the particular experiences drawn upon by the students to cope with the distractions. Consequently, I discuss ways in which teachers may turn distractions encountered in laboratory activities into educative experiences for more than a few lucky students.

  • 2009. Karim Mikael Hamza, Per-Olof Wickman. Science Education 93, 1026-1049

    Students’ difficulties with learning science have generally been framed in terms of their generalized conceptual knowledge of a science topic as elicited through their explanations of natural phenomena. In this paper, we empirically explore what more goes into giving a scientific account of a natural phenomenon than giving such generalized explanations. We audio-recorded pairs of upper secondary students during lab-work in electrochemistry. We used a situative and pragmatist approach to study learning in action. This approach made it possible to study how the particulars and contingencies of working with a real electrochemical cell went into students’ reasoning. Our results show that students needed to learn to make distinctions, recognize, and name the particulars in encounters with their cell. They also needed to learn what counts as reasonable readings and to deal with quantitative issues and correlations pertaining to their cell. We refer to these additional learning requirements as the students’ taxonomic and measurement interests. Implications for what is involved in giving a scientific account of a natural phenomenon in school are discussed. The study constitutes an attempt to include, in a systematic way, also the particulars and contingencies of actual practice in an account of students’ reasoning in science.

  • 2008. Karim Hamza, Per-Olof Wickman. Science Education 92 (1), 141-164

    Although misconceptions in science have been established in interview studies, their role during the learning process is poorly examined. In this paper we use results from a classroom study to analyze to what extent nonscientific ideas in electrochemistry that students report in interviews enter into their learning in a more authentic setting. We audio recorded talk between eight pairs of Swedish upper secondary students during a practical on electrochemical cells. Learning was operationalized on a discursive level as a description of what students do and say when taking part in an activity. This enabled an analysis of how encounters with misconceptions influenced the development of students’ reasoning, compared to other encounters during the learning experience. Misconceptions did not constrain the development of students’ reasoning. Rather, their reasoning developed in response to the contingencies of the specific situation. When misconceptions were encountered, they appeared as alternatives and questions not actively defended. Sometimes, encounters with these misconceptions were generative of the students’ reasoning. The results indicate that demonstrating misconceptions in interviews is not enough to assume that they interfere with learning in other contexts. Educational implications and future lines of research based on these findings and on the methodology applied are discussed.

Visa alla publikationer av Karim Hamza vid Stockholms universitet

Senast uppdaterad: 26 oktober 2017

Bokmärk och dela Tipsa