Andreas Gerhardsson Foto: Psykologiska institutionen/HD

Andreas Gerhardsson


Visa sidan på svenska
Works at Department of Psychology
Telephone 08-16 38 34
Visiting address Frescati hagväg 14
Room 149
Postal address Psykologiska institutionen 106 91 Stockholm

About me

I received my master’s degree in psychology in 2014 together with a teacher’s degree. I published an article based on my thesis the year after. After I graduated I worked as a research assistant at the Stress Research Institute at Stockholm University in a project where we looked at how sleep deprivation affects the response to acute social stress.


I have since spring 2017 started teaching in statistics, lectured about sleep, supervised laborations in kognition and other minor studies.


In general I’m interested in experimental psychology and primarily in emotion-cognition interaction and how it is affected by sleep loss which is going to be the main focus of my thesis.


A selection from Stockholm University publication database
  • 2019. Andreas Gerhardsson (et al.).
  • 2019. Johanna Schwarz (et al.). Journal of Sleep Research 28 (4)

    Sleep deprivation commonly impairs affective regulation and causes worse mood. However, the majority of previous research concerns young adults. Because susceptibility to sleep deprivation and emotion regulation change distinctively across adult age, we tested here the hypothesis that the effect of sleep deprivation on mood is stronger in young than in older adults. In an experimental design, young (18–30 years) and older adults (60–72 years) participated in either a sleep control (young, n = 63; older, n = 47) or a total sleep deprivation condition (young, n = 61; older, n = 47). Sleepiness, mood and common symptoms of sleep deprivation were measured using established questionnaires and ratings. Sleep‐deprived participants felt more sleepy, stressed and cold, and reported lower vigour and positive affect, regardless of age. All the other outcome measures (negative affect, depression, confusion, tension, anger, fatigue, total mood disturbance, hunger, cognitive attenuation, irritability) showed a weaker response to sleep deprivation in the older group, as indicated by age*sleep deprivation interactions (ps < 0.05). The results show that older adults are emotionally less affected by sleep deprivation than young adults. This tolerance was mainly related to an attenuated increase in negative mood. This could possibly be related to the well‐known positivity effect, which suggests that older adults prioritize regulating their emotions to optimize well‐being. The results also highlight that caution is warranted when generalizing results from sleep deprivation studies across the adult lifespan.

  • 2019. Andreas Gerhardsson (et al.). Journal of Sleep Research 28 (1)

    The emotional dysregulation and impaired working memory found after sleep loss can have severe implications for our daily functioning. Considering the intertwined relationship between emotion and cognition in stimuli processing, there could be further implications of sleep deprivation in high‐complex emotional situations. Although studied separately, this interaction between emotion and cognitive processes has been neglected in sleep research. The aim of the present study was to investigate the effect of 1 night of sleep deprivation on emotional working memory. Sixty‐one healthy participants (mean age: 23.4 years) were either sleep deprived for 1 night (n = 30) or had a normal night’s sleep (n = 31). They performed an N‐back task with two levels of working memory load (1‐back and 3‐back) using positive, neutral and negative picture scenes. Sleep deprivation, compared with full night sleep, impaired emotional working memory accuracy, but not reaction times. The sleep‐deprived participants, but not the controls, responded faster to positive than to negative and neutral pictures. The effect of sleep deprivation was similar for both high and low working memory loads. The results showed that although detrimental in terms of accuracy, sleep deprivation did not impair working memory speed. In fact, our findings indicate that positive stimuli may facilitate working memory processing speed after sleep deprivation.

  • 2018. Johanna Schwarz (et al.). Psychoneuroendocrinology 96, 155-165

    Sleep loss and psychosocial stress often co-occur in today’s society, but there is limited knowledge on the combined effects. Therefore, this experimental study investigated whether one night of sleep deprivation affects the response to a psychosocial challenge. A second aim was to examine if older adults, who may be less affected by both sleep deprivation and stress, react differently than young adults. 124 young (18–30 years) and 94 older (60–72 years) healthy adults participated in one of four conditions: i. normal night sleep & Placebo-Trier Social Stress Test (TSST), ii. normal night sleep & Trier Social Stress Test, iii. sleep deprivation & Placebo-TSST, iv. sleep deprivation & TSST. Subjective stress ratings, heart rate variability (HRV), salivary alpha amylase (sAA) and cortisol were measured throughout the protocol. At the baseline pre-stress measurement, salivary cortisol and subjective stress values were higher in sleep deprived than in rested participants. However, the reactivity to and recovery from the TSST was not significantly different after sleep deprivation for any of the outcome measures. Older adults showed higher subjective stress, higher sAA and lower HRV at baseline, indicating increased basal autonomic activity. Cortisol trajectories and HRV slightly differed in older adults compared with younger adults (regardless of the TSST). Moreover, age did not moderate the effect of sleep deprivation. Taken together, the results show increased stress levels after sleep deprivation, but do not confirm the assumption that one night of sleep deprivation increases the responsivity to an acute psychosocial challenge.

  • 2015. Andreas Gerhardsson, Lennart Högman, Håkan Fischer. Frontiers in Psychology 6

    In our daily perception of facial expressions, we depend on an ability to generalize across the varied distances at which they may appear. This is important to how we interpret the quality and the intensity of the expression. Previous research has not investigated whether this so called perceptual constancy also applies to the experienced intensity of facial expressions. Using a psychophysical measure (Borg CR100 scale) the present study aimed to further investigate perceptual constancy of happy and angry facial expressions at varied sizes, which is a proxy for varying viewing distances. Seventy-one (42 females) participants rated the intensity and valence of facial expressions varying in distance and intensity. The results demonstrated that the perceived intensity (PI) of the emotional facial expression was dependent on the distance of the face and the person perceiving it. An interaction effect was noted, indicating that close-up faces are perceived as more intense than faces at a distance and that this effect is stronger the more intense the facial expression truly is. The present study raises considerations regarding constancy of the PI of happy and angry facial expressions at varied distances.

Show all publications by Andreas Gerhardsson at Stockholm University

Last updated: September 4, 2020

Bookmark and share Tell a friend