Birgit WildAssistant professor
About me
My research focuses on how climate warming changes carbon and nitrogen cycling in the Arctic, and how this affects large-scale greenhouse gas fluxes. Arctic ecosystems store large amounts of organic carbon and nitrogen within continuously frozen permafrost soils that are rapidly thawing as a consequence of global warming. Previously frozen carbon and nitrogen consequently become accessible to microbial decomposers, resulting in the production of greenhouse gases that can further accelerate global warming.
Current research focus areas:
- Effect of increasing plant productivity and vegetation shifts on soil organic matter decomposition in permafrost systems (“priming effect”);
- Carbon-nitrogen interactions in permafrost soils and feedback on plant productivity;
- Greenhouse gas release from inundated permafrost on the Arctic Ocean shelves (“subsea permafrost”);
- Nitrogen cycling and N2O production on the Arctic Ocean shelves;
- Transfer and degradation of permafrost-derived organic carbon along the land-river-ocean continuum, and impact on Arctic Ocean acidification.
Research projects
Publications
A selection from Stockholm University publication database
-
Circum-Arctic peat soils resist priming by plant-derived compounds
2023. Birgit Wild (et al.). Soil Biology and Biochemistry 180
ArticleRapid Arctic warming increases permafrost thaw and CO2 production from soil organic matter decomposition, but also enhances CO2 uptake by plants. Conversely, plants can also stimulate soil organic matter decomposition near their roots, via rhizosphere priming. The recent PrimeSCale model suggests that this can accelerate Arctic soil carbon loss at a globally relevant rate, and points to large potential contributions from carbon-rich permafrost peatlands. At the same time, the high carbon content of peatlands might render them insusceptible to input of easily available organic compounds by plant roots, which is considered a key component of priming. We here investigated the sensitivity of permafrost peat soils to priming by plant compounds under aerobic conditions that resemble the dominant rooting zone, based on a 30-week laboratory incubation of peat soils from five circum-Arctic locations. No significant change in CO2 production from peat organic matter by organic carbon addition was observed, and an increase of 24% by organic nitrogen addition. Combining our data with a literature meta-analysis of priming studies showed similar, low priming sensitivity in organic layers of mineral soils, and significantly stronger priming in mineral horizons where organic carbon and nitrogen increased decomposition by 32% and 62%, respectively. Low sensitivity of permafrost peat to input of organic compounds was also supported under anaerobic conditions, by incubation of one soil type. In a new PrimeSCale sensitivity analysis, we show that excluding peatlands would reduce estimates of priming-induced carbon loss from the circum-Arctic by up to 40% (up to 18 Pg) until 2100, depending on peat priming sensitivity. While our study suggests a limited effect of plant-released organic compounds on peat decomposition, it does not preclude an effect of vegetation on decomposition under natural conditions, through other mechanisms. The large range of possible priming-induced peat carbon losses, and expected changes in vegetation and drainage, call for a sharpened focus on the combined effect of living plants on soil processes beyond carbon input, including changes in nutrient and water availability, aggregation, and microbial communities.
-
How temperature and aridity drive lignin decomposition along a latitudinal transect in western Siberia
2023. Thao Thi Dao (et al.). European Journal of Soil Science 74 (5)
ArticleClimate change drives a northward shift of biomes in high-latitude regions. This might have consequences on the decomposition of plant litter entering the soil, including its lignin component, which is one of the most abundant components of vascular plants. In order to elucidate the combined effect of climate and soil characteristics on the decomposition pattern of lignin, we investigated lignin contents and its degree of oxidative decomposition within soil profiles along a climosequence in western Siberia. Soil samples were collected from organic topsoil to mineral subsoil at six sites along a 1500-km latitudinal transect, stretching from tundra, through taiga and forest steppe to typical steppe. The stage of lignin degradation, as mirrored by decreasing organic carbon-normalized lignin contents and increasing oxidative alteration of the remnant lignin (acid-to-aldehyde ratios of vanillyl- and syringyl-units [(Ac/Al)V and (Ac/Al)S]) within soil horizons, increased from tundra to forest steppe and then decreased to the steppe. Principal component analysis, involving also climatic conditions such as mean annual temperature and aridity index, showed that the different states of lignin degradation between horizons related well to the activity of phenoloxidases and peroxidases, enzymes involved in lignin depolymerization that are produced primarily by fungi and less importantly by bacteria. The low microbial lignin decomposition in the tundra was likely due to low temperature and high soil moisture, which do not favour the fungi. Increasing temperature and decreasing soil moisture, facilitating a higher abundance of fungi, led to increased fungal lignin decomposition towards the forest-steppe biome, while drought and high pH might be responsible for the reduced lignin decomposition in the steppe. We infer that a shift of biomes to the north, driven by climate change, might promote lignin decomposition in the northern parts, whereas in the south a further retardation might be likely.
-
Nitrous Oxide Dynamics in the Siberian Arctic Ocean and Vulnerability to Climate Change
2023. Birgit Wild (et al.). Journal of Geophysical Research - Biogeosciences 128 (5)
ArticleNitrous oxide (N2O) is a strong greenhouse gas and stratospheric ozone-depleting substance. Around 20% of global emissions stem from the ocean, but current estimates and future projections are uncertain due to poor spatial coverage over large areas and limited understanding of drivers of N2O dynamics. Here, we focus on the extensive and particularly data-lean Arctic Ocean shelves north of Siberia that experience rapid warming and increasing input of land-derived nitrogen with permafrost thaw. We combine water column N2O measurements from two expeditions with on-board incubation of intact sediment cores to assess N2O dynamics and the impact of land-derived nitrogen. Elevated nitrogen concentrations in water column and sediments were observed near large river mouths. Concentrations of N2O were only weakly correlated with dissolved nitrogen and turbidity, reflecting particulate matter from rivers and coastal erosion, and correlations varied between river plumes. Surface water N2O concentrations were on average close to equilibrium with the atmosphere, but varied widely (N2O saturation 38%-180%), indicating strong local N2O sources and sinks. Water column N2O profiles and low sediment-water N2O fluxes do not support strong sedimentary sources or sinks. We suggest that N2O dynamics in the region are influenced by water column N2O consumption under aerobic conditions or in anoxic microsites of particles, and possibly also by water column N2O production. Changes in biogeochemical and physical conditions will likely alter N2O dynamics in the Siberian Arctic Ocean over the coming decades, in addition to reduced N2O solubility in a warmer ocean.
-
Molecular-Multiproxy Assessment of Land-Derived Organic Matter Degradation Over Extensive Scales of the East Siberian Arctic Shelf Seas
2022. Felipe Matsubara (et al.). Global Biogeochemical Cycles 36 (12)
ArticleGlobal warming triggers permafrost thaw, which increases the release of terrigenous organic matter (terr-OM) to the Arctic Ocean by coastal erosion and rivers. Terrigenous OM degradation in the Arctic Ocean contributes to greenhouse gas emissions and severe ocean acidification, yet the vulnerability of different terr-OM components is poorly resolved. Here, terr-OM degradation dynamics are studied with unprecedented spatial coverage over the World's largest shelf sea system—the East Siberian Arctic Shelf (ESAS), using a multi-proxy molecular biomarker approach. Mineral-surface-area-normalized concentrations of terr-OM compounds in surface sediments decreases offshore. Differences between terr-OM compound classes (lignin phenols, high-molecular weight [HMW] n-alkanes, n-alkanoic acids and n-alkanols, sterols, 3,5-dihydroxybenzoic acids, cutin acids) reflect contrasting influence of sources, propensity to microbial degradation and association with sedimenting particles, with lignin phenols disappearing 3-times faster than total terr-OM, and twice faster than other biomarkers. Molecular degradation proxies support substantial terr-OM degradation across the ESAS, with clearest trends shown by: 3,5-dihydroxybenzoic acid/vanillyl phenol ratios, acid-to-aldehyde ratios of syringyl and vanillyl phenols, Carbon Preference Indices of HMW n-alkyl compounds and sitostanol/β-sitosterol. The combination of terr-OM biomarker data with δ13C/Δ14C-based source apportionment indicates that the more degraded state of lignin is influenced by the relative contribution of river-transported terr-OM from surface soils, while HMW n-alkanoic acids and stigmasterol are influenced by erosion-derived terr-OM from Ice Complex deposits. Our findings demonstrate differences in vulnerability to degradation between contrasting terr-OM pools, and underscore the need to consider molecular properties for understanding and modeling of large-scale biogeochemical processes of the permafrost carbon-climate feedback.
-
Circum-Arctic release of terrestrial carbon varies between regions and sources
2022. Jannik Martens (et al.). Nature Communications 13
ArticleArctic change is expected to destabilize terrestrial carbon (terrOC) in soils and permafrost, leading to fluvial release, greenhouse gas emission and climate feedback. However, landscape heterogeneity and location-specific observations complicate large-scale assessments of terrOC mobilization. Here we reveal differences in terrOC release, deduced from the Circum-Arctic Sediment Carbon Database (CASCADE) using source-diagnostic (δ13C-Δ14C) and carbon accumulation data. The results show five-times larger terrOC release from the Eurasian than from the American Arctic. Most of the circum-Arctic terrOC originates from near-surface soils (61%); 30% stems from Pleistocene-age permafrost. TerrOC translocation, relative to land-based terrOC stocks, varies by a factor of five between circum-Arctic regions. Shelf seas with higher relative terrOC translocation follow the spatial pattern of recent Arctic warming, while such with lower translocation reflect long-distance lateral transport with efficient remineralization of terrOC. This study provides a receptor-based perspective for how terrOC release varies across the circum-Arctic.
-
Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea
2022. Birgit Wild (et al.). Nature Communications 13
ArticleSubsea permafrost represents a large carbon pool that might be or become a significant greenhouse gas source. Scarcity of observational data causes large uncertainties. We here use five 21-56 m long subsea permafrost cores from the Laptev Sea to constrain organic carbon (OC) storage and sources, degradation state and potential greenhouse gas production upon thaw. Grain sizes, optically-stimulated luminescence and biomarkers suggest deposition of aeolian silt and fluvial sand over 160 000 years, with dominant fluvial/alluvial deposition of forest- and tundra-derived organic matter. We estimate an annual thaw rate of 1.3 ± 0.6 kg OC m−2 in subsea permafrost in the area, nine-fold exceeding organic carbon thaw rates for terrestrial permafrost. During 20-month incubations, CH4 and CO2 production averaged 1.7 nmol and 2.4 µmol g−1 OC d−1, providing a baseline to assess the contribution of subsea permafrost to the high CH4 fluxes and strong ocean acidification observed in the region.
-
Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils
2022. Thao Thi Dao (et al.). Journal of Geophysical Research - Biogeosciences 127 (1)
ArticlePermafrost-affected soils in the northern circumpolar region store more than 1,000 Pg soil organic carbon (OC), and are strongly vulnerable to climatic warming. However, the extent to which changing soil environmental conditions with permafrost thaw affects different compounds of soil organic matter (OM) is poorly understood. Here, we assessed the fate of lignin and non-cellulosic carbohydrates in density fractionated soils (light fraction, LF vs. heavy fraction, HF) from three permafrost regions with decreasing continentality, expanding from east to west of northern Siberia (Cherskiy, Logata, Tazovskiy, respectively). In soils at the Tazovskiy site with thicker active layers, the LF showed smaller OC-normalized contents of lignin-derived phenols and plant-derived sugars and a decrease of these compounds with soil depth, while a constant or even increasing trend was observed in soils with shallower active layers (Cherskiy and Logata). Also in the HF, soils at the Tazovskiy site had smaller contents of OC-normalized lignin-derived phenols and plant-derived sugars along with more pronounced indicators of oxidative lignin decomposition and production of microbial-derived sugars. Active layer deepening, thus, likely favors the decomposition of lignin and plant-derived sugars, that is, lignocelluloses, by increasing water drainage and aeration. Our study suggests that climate-induced degradation of permafrost soils may promote carbon losses from lignin and associated polysaccharides by abolishing context-specific preservation mechanisms. However, relations of OC-based lignin-derived phenols and sugars in the HF with mineralogical properties suggest that future OM transformation and carbon losses will be modulated in addition by reactive soil minerals.
-
Spatial patterns and distributional controls of total and methylated mercury off the Lena River in the Laptev Sea sediments
2022. Van Liem-Nguyen (et al.). Marine Chemistry 238
ArticleA warmer climate is predicted to accelerate the export of mercury (Hg) from Siberian rivers to the Arctic Ocean, yet there is a dearth of process-oriented studies on the speciation and fate of Hg in the shelf sea system. Here, we present data on total Hg (HgT) and methylmercury (MeHg) in Laptev Sea surface sediments along a cross-shelf transect starting at the mouth of the Lena River. Concentrations of HgT along the 330 km cross-shelf transect ranged within a fairly narrow span from 480 to 150 pmol g(-1) d.w., while concentrations of MeHg decreased one hundredfold from 13 pmol g(-1) d.w. near the Lena river to 0.095 pmol g(-1) d.w. in the more distall stations. The highest concentrations of HgT and MeHg were observed close to the river delta and were associated with a high supply of organic carbon (OC). Enrichment of the OC normalized HgT concentration (HgTOC) and depletion of the OC normalized MeHg concentration (MeHgOC) across the shelf suggests bulk OC content to not be the only driver of the HgT and MeHg spatial distributions. Based on correlations observed between HgTOC and MeHgOC and proxies for sediment physics and organic matter pools we suggest the spatial distribution of Hg and MeHg to also be influenced by hydrodynamic sorting of riverine-derived material. For MeHg, depletion of the MeHgOC across the shelf is likely driven by the trapping of terrestrial MeHg in sediments close to the river delta before it is degraded in the water column.
-
CASCADE - The Circum-Arctic Sediment CArbon DatabasE
2021. Jannik Martens (et al.). Earth System Science Data 13 (6), 2561-2572
ArticleBiogeochemical cycling in the semi-enclosed Arctic Ocean is strongly influenced by land-ocean transport of carbon and other elements and is vulnerable to environmental and climate changes. Sediments of the Arctic Ocean are an important part of biogeochemical cycling in the Arctic and provide the opportunity to study present and historical input and the fate of organic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differences between the Arctic regions and to study Arctic biogeochemical budgets. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) was established to curate data primarily on concentrations of organic carbon (OC) and OC isotopes (delta C-13, Delta C-14) yet also on total N (TN) as well as terrigenous biomarkers and other sediment geochemical and physical properties. This new database builds on the published literature and earlier unpublished records through an extensive international community collaboration. This paper describes the establishment, structure and current status of CASCADE. The first public version includes OC concentrations in surface sediments at 4244 oceanographic stations including 2317 with TN concentrations, 1555 with delta C-13-OC values and 268 with Delta C-14-OC values and 653 records with quantified terrigenous biomarkers (high-molecular-weight n-alkanes, n-alkanoic acids and lignin phenols). CASCADE also includes data from 326 sediment cores, retrieved by shallow box or multi-coring, deep gravity/piston coring, or sea-bottom drilling. The comprehensive dataset reveals large-scale features of both OC content and OC sources between the shelf sea recipients. This offers insight into release of pre-aged terrigenous OC to the East Siberian Arctic shelf and younger terrigenous OC to the Kara Sea. Circum-Arctic sediments thereby reveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments and facilitates a wide array of future empirical and modeling studies of the Arctic carbon cycle. The database is openly and freely available online (https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in various machine-readable data formats (data tables, GIS shapefile, GIS raster), and also provides ways for contributing data for future CASCADE versions. We will continuously update CASCADE with newly published and contributed data over the foreseeable future as part of the database management of the Bolin Centre for Climate Research at Stockholm University.
-
Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
2020. Frida Keuper (et al.). Nature Geoscience 13 (8), 560-565
ArticleAs global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism-termed the rhizosphere priming effect-may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by similar to 12%, which translates to a priming-induced absolute loss of similar to 40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 degrees C.
-
Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events
2020. Jannik Martens (et al.). Science Advances 6 (42)
ArticleCarbon cycle models suggest that past warming events in the Arctic may have caused large-scale permafrost thaw and carbon remobilization, thus affecting atmospheric CO2 levels. However, observational records are sparse, preventing spatially extensive and time-continuous reconstructions of permafrost carbon release during the late Pleistocene and early Holocene. Using carbon isotopes and biomarkers, we demonstrate that the three most recent warming events recorded in Greenland ice cores-(i) Dansgaard-Oeschger event 3 (similar to 28 ka B.P.), (ii) Bolling-Allerod (14.7 to 12.9 ka B.P.), and (iii) early Holocene (similar to 11.7 ka B.P.)-caused massive remobilization and carbon degradation from permafrost across northeast Siberia. This amplified permafrost carbon release by one order of magnitude, particularly during the last deglaciation when global sea-level rise caused rapid flooding of the land area thereafter constituting the vast East Siberian Arctic Shelf. Demonstration of past warming-induced release of permafrost carbon provides a benchmark for the sensitivity of these large carbon pools to changing climate.
-
Plant roots increase both decomposition and stable organic matter formation in boreal forest soil
2019. Bartosz Adamczyk (et al.). Nature Communications 10
ArticleBoreal forests are ecosystems with low nitrogen (N) availability that store globally significant amounts of carbon (C), mainly in plant biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms controlling boreal C and N pools are not well understood. Here, using a three-year field experiment, we compare SOM decomposition and stabilization in the presence of roots, with exclusion of roots but presence of fungal hyphae and with exclusion of both roots and fungal hyphae. Roots accelerate SOM decomposition compared to the root exclusion treatments, but also promote a different soil N economy with higher concentrations of organic soil N compared to inorganic soil N accompanied with the build-up of stable SOM-N. In contrast, root exclusion leads to an inorganic soil N economy (i.e., high level of inorganic N) with reduced stable SOM-N buildup. Based on our findings, we provide a framework on how plant roots affect SOM decomposition and stabilization.
-
Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost
2019. Birgit Wild (et al.). Proceedings of the National Academy of Sciences of the United States of America 116 (21), 10280-10285
ArticleClimate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO2 and CH4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of C-14 in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The C-14-constrained estimate of export specifically from PP-C corresponds to only 17 +/- 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 +/- 8%), POC carried a much stronger signature of PP-C (63 +/- 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative C-14-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming.
-
Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands
2019. Lucia Fuchslueger (et al.). Soil Biology and Biochemistry 135, 144-153
ArticleGrassland management can modify soil microbial carbon (C) and nitrogen (N) cycling, affecting the resistance to extreme weather events, which are predicted to increase in frequency and magnitude in the near future. However, effects of grassland management on microbial C and N cycling and their responses to extreme weather events, such as droughts and heatwaves, have rarely been tested in a combined approach. We therefore investigated whether grassland management affects microbial C and N cycling responses to drought and temperature manipulation. We collected soils from in situ drought experiments conducted in an extensively managed and an abandoned mountain grassland and incubated them at two temperature levels. We measured microbial respiration and substrate incorporation, as well as gross rates of organic and inorganic N cycling to estimate microbial C and N use efficiencies (CUE and NUE). The managed grassland was characterized by lower microbial biomass, lower fungi to bacteria ratio, and higher microbial CUE, but only slightly different microbial NUE. At both sites drought induced a shift in microbial community composition driven by an increase in Gram-positive bacterial abundance. Drought significantly reduced C substrate respiration and incorporation by microbes at both sites, while microbial CUE remained constant. In contrast, drought increased gross rates of N mineralization at both sites, whereas gross amino acid uptake rates only marginally changed. We observed a significant direct, as well as interactive effect between land management and drought on microbial NUE. Increased temperatures significantly stimulated microbial respiration and reduced microbial CUE independent of drought or land management. Although microbial N processing rates showed no clear response, microbial NUE significantly decreased at higher temperatures. In summary in our study, microbial CUE, in particular respiration, is more responsive to temperature changes. Although N processing rates were stronger responding to drought than to temperature microbial NUE was affected by both drought and temperature increase. We conclude that direct effects of drought and heatwaves can induce different responses in soil microbial C and N cycling similarly in the studied land management systems.
-
Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments During the End of the Last Deglaciation
2019. Jannik Martens (et al.). Global Biogeochemical Cycles 33 (1), 2-14
ArticleClimate warming is expected to destabilize permafrost carbon (PF-C) by thaw-erosion and deepening of the seasonally thawed active layer and thereby promote PF-C mineralization to CO2 and CH4. A similar PF-C remobilization might have contributed to the increase in atmospheric CO2 during deglacial warming after the last glacial maximum. Using carbon isotopes and terrestrial biomarkers (Delta C-14, delta C-13, and lignin phenols), this study quantifies deposition of terrestrial carbon originating from permafrost in sediments from the Chukchi Sea (core SWERUS-L2-4-PC1). The sediment core reconstructs remobilization of permafrost carbon during the late Allerod warm period starting at 13,000 cal years before present (BP), the Younger Dryas, and the early Holocene warming until 11,000 cal years BP and compares this period with the late Holocene, from 3,650 years BP until present. Dual-carbon-isotope-based source apportionment demonstrates that Ice Complex Deposit-ice- and carbon-rich permafrost from the late Pleistocene (also referred to as Yedoma)-was the dominant source of organic carbon (66 +/- 8%; mean +/- standard deviation) to sediments during the end of the deglaciation, with fluxes more than twice as high (8.0 +/- 4.6 g.m(-2).year(-1)) as in the late Holocene (3.1 +/- 1.0 g.m(-2).year(-1)). These results are consistent with late deglacial PF-C remobilization observed in a Laptev Sea record, yet in contrast with PF-C sources, which at that location were dominated by active layer material from the Lena River watershed. Release of dormant PF-C from erosion of coastal permafrost during the end of the last deglaciation indicates vulnerability of Ice Complex Deposit in response to future warming and sea level changes.
-
Decoupling of priming and microbial N mining during a short-term soil incubation
2019. Birgit Wild (et al.). Soil Biology and Biochemistry 129, 71-79
ArticleSoil carbon (C) and nitrogen (N) availability depend on the breakdown of soil polymers such as lignin, chitin, and protein that represent the major fraction of soil C and N but are too large for immediate uptake by plants and microorganisms. Microorganisms may adjust the production of enzymes targeting different polymers to optimize the balance between C and N availability and demand, and for instance increase the depolymerization of N-rich compounds when C availability is high and N availability low (microbial N mining). Such a mechanism could mitigate plant N limitation but also lie behind a stimulation of soil respiration frequently observed in the vicinity of plant roots (priming effect). We here compared the effect of increased C and N availability on the depolymerization of native bulk soil organic matter (SOM), and of C-13-enriched lignin, chitin, and protein added to the same soil in two complementary ten day microcosm incubation experiments. A significant reduction of chitin depolymerization (described by the recovery of chitin-derived C in the sum of dissolved organic, microbial and respired C) upon N addition indicated that chitin was degraded to serve as a microbial N source under low-N conditions and replaced in the presence of an immediately available alternative. Protein and lignin depolymerization in contrast were not affected by N addition. Carbon addition enhanced microbial N demand and SOM decomposition rates, but significantly reduced lignin, chitin, and protein depolymerization. Our findings contrast the hypothesis of increased microbial N mining as a key driver behind the priming effect and rather suggest that C addition promoted the mobilization of other soil C pools that replaced lignin, chitin, and protein as microbial C sources, for instance by releasing soil compounds from mineral bonds. We conclude that SOM decomposition is interactively controlled by multiple mechanisms including the balance between C vs N availability. Disentangling these controls will be crucial for understanding C and N cycling on an ecosystem scale.
-
Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates
2018. Simon M. Landhausser (et al.). Tree Physiology 38 (12), 1764-1778
ArticleNon-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns in plant carbon balance among studies. A recent assessment found that NSC concentrations measured for a common set of samples can vary by an order of magnitude, but sources for this variability were unclear. We measured a common set of nine plant material types, and two synthetic samples with known NSC concentrations, using a common protocol for sugar extraction and starch digestion, and three different sugar quantification methods (ion chromatography, enzyme, acid) in six laboratories. We also tested how sample handling, extraction solvent and centralizing parts of the procedure in one laboratory affected results. Non-structural carbohydrate concentrations measured for synthetic samples were within about 11.5% of known values for all three methods. However, differences among quantification methods were the largest source of variation in NSC measurements for natural plant samples because the three methods quantify different NSCs. The enzyme method quantified only glucose, fructose and sucrose, with ion chromatography we additionally quantified galactose, while the acid method quantified a large range of mono- and oligosaccharides. For some natural samples, sugars quantified with the acid method were two to five times higher than with other methods, demonstrating that trees allocate carbon to a range of sugar molecules. Sample handling had little effect on measurements, while ethanol sugar extraction improved accuracy over water extraction. Our results demonstrate that reasonable accuracy of NSC measurements can be achieved when different methods are used, as long as protocols are robust and standardized. Thus, we provide detailed protocols for the extraction, digestion and quantification of NSCs in plant samples, which should improve the comparability of NSC measurements among laboratories.
-
Resistance of soil protein depolymerization rates to eight years of elevated CO2, warming, and summer drought in a temperate heathland
2018. Birgit Wild (et al.). Biogeochemistry 140 (3), 255-267
ArticleSoil N availability for plants and microorganisms depends on the breakdown of soil polymers such as proteins into smaller, assimilable units by microbial extracellular enzymes. Changing climatic conditions are expected to alter protein depolymerization rates over the next decades, and thereby affect the potential for plant productivity. We here tested the effect of increased CO2 concentration, temperature, and drought frequency on gross rates of protein depolymerization, N mineralization, microbial amino acid and ammonium uptake using N-15 pool dilution assays. Soils were sampled in fall 2013 from the multifactorial climate change experiment CLIMAITE that simulates increased CO2 concentration, temperature, and drought frequency in a fully factorial design in a temperate heathland. Eight years after treatment initiation, we found no significant effect of any climate manipulation treatment, alone or in combination, on protein depolymerization rates. Nitrogen mineralization, amino acid and ammonium uptake showed no significant individual treatment effects, but significant interactive effects of warming and drought. Combined effects of all three treatments were not significant for any of the measured parameters. Our findings therefore do not suggest an accelerated release of amino acids from soil proteins in a future climate at this site that could sustain higher plant productivity.
-
Temperature response of permafrost soil carbon is attenuated by mineral protection
2018. Norman Gentsch (et al.). Global Change Biology 24 (8), 3401-3415
ArticleClimate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15 degrees C. The HF was equivalent to 70 +/- 9% of the bulk CO2 respiration as compared to a share of 63 +/- 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger C-14 signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.
-
Significance of dark CO2 fixation in arctic soils
2018. Hana Santruckova (et al.). Soil Biology and Biochemistry 119, 11-21
ArticleThe occurrence of dark fixation of CO2 by heterotrophic microorganisms in soil is generally accepted, but its importance for microbial metabolism and soil organic carbon (C) sequestration is unknown, especially under C limiting conditions. To fill this knowledge gap, we measured dark (CO2)-C-13 incorporation into soil organic matter and conducted a C-13-labelling experiment to follow the C-13 incorporation into phospholipid fatty acids as microbial biomass markers across soil profiles of four tundra ecosystems in the northern circumpolar region, where net primary productivity and thus soil C inputs are low. We further determined the abundance of various carboxylase genes and identified their microbial origin with metagenomics. The microbial capacity for heterotrophic CO2 fixation was determined by measuring the abundance of carboxylase genes and the incorporation of C-13 into soil C following the augmentation of bioavailable C sources. We demonstrate that dark CO2 fixation occurred ubiquitously in arctic tundra soils, with increasing importance in deeper soil horizons, presumably due to increasing C limitation with soil depth. Dark CO2 fixation accounted on average for 0.4, 1.0, 1.1, and 16% of net respiration in the organic, cryoturbated organic, mineral and permafrost horizons, respectively. Genes encoding anaplerotic enzymes of heterotrophic microorganisms comprised the majority of identified carboxylase genes. The genetic potential for dark CO2 fixation was spread over a broad taxonomic range. The results suggest important regulatory function of CO2 fixation in C limited conditions. The measurements were corroborated by modeling the long-term impact of dark CO2 fixation on soil organic matter. Our results suggest that increasing relative CO2 fixation rates in deeper soil horizons play an important role for soil internal C cycling and can, at least in part, explain the isotopic enrichment with soil depth.
-
Amino acid production exceeds plant nitrogen demand in Siberian tundra
2018. Birgit Wild (et al.). Environmental Research Letters 13 (3)
ArticleArctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using N-15 pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.
-
Fate of carbohydrates and lignin in north-east Siberian permafrost soils
2018. Thi Thao (et al.). Soil Biology and Biochemistry 116, 311-322
ArticlePermafrost soils preserve huge amounts of organic carbon (OC) prone to decomposition under changing climatic conditions. However, knowledge on the composition of soil organic matter (OM) and its transformation and vulnerability to decomposition in these soils is scarce. We determined neutral sugars and lignin-derived phenols, released by trifluoroacetic acid (TFA) and CuO oxidation, respectively, within plants and soil density fractions from the active layer and the upper permafrost layer at three different tundra types (shrubby grass, shrubby tussock, shrubby lichen) in the Northeast Siberian Arctic. The heavy fraction (HF; > 1.6 g mL(-1)) was characterized by a larger enrichment of microbial sugars (hexoses vs. pentoses) and more pronotmced lignin degradation (acids vs. aldehydes) as compared to the light fraction (LF; < 1.6 g mL(-1)), showing the transformation from plant residue-dominated particulate OM to a largely microbial imprint in mineral-associated OM. In contrast to temperate and tropical soils, total neutral sugar contents and galactose plus mannose to arabinose plus xylose ratios (GM/AX) decreased in the HE with soil depth, which may indicate a process of effective recycling of microbial biomass rather than utilizing old plant materials. At the same dine, lignin-derived phenols increased and the degree of oxidative decomposition of lignin decreased with soil depth, suggesting a selective preservation of lignin presumably due to anaerobiosis. As large parts of the plant-derived pentoses are incorporated in lignocelluloses and thereby protected against rapid decomposition, this might also explain the relative enrichment of pentoses with soil depth. Hence, our results show a relatively large contribution of plant derived OM, particularly in the buried topsoil and subsoil, which is stabilized by the current soil environmental conditions but may become available to decomposers if permafrost degradation promotes soil drainage and improves the soil oxygen supply.
-
Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils
2017. Birgit Wild (et al.). Biogeochemistry 136 (3), 261-278
ArticleRising carbon dioxide (CO2) concentrations and temperatures are expected to stimulate plant productivity and ecosystem C sequestration, but these effects require a concurrent increase in N availability for plants. Plants might indirectly promote N availability as they release organic C into the soil (e.g., by root exudation) that can increase microbial soil organic matter (SOM) decomposition (priming effect), and possibly the enzymatic breakdown of N-rich polymers, such as proteins, into bio-available units (N mining). We tested the adjustment of protein depolymerization to changing soil C and N availability in a laboratory experiment. We added easily available C or N sources to six boreal forest soils, and determined soil organic C mineralization, gross protein depolymerization and gross ammonification rates (using N-15 pool dilution assays), and potential extracellular enzyme activities after 1 week of incubation. Added C sources were C-13-labelled to distinguish substrate from soil derived C mineralization. Observed effects reflect short-term adaptations of non-symbiotic soil microorganisms to increased C or N availability. Although C input promoted microbial growth and N demand, we did not find indicators of increased N mobilization from SOM polymers, given that none of the soils showed a significant increase in protein depolymerization, and only one soil showed a significant increase in N-targeting enzymes. Instead, our findings suggest that microorganisms immobilized the already available N more efficiently, as indicated by decreased ammonification and inorganic N concentrations. Likewise, although N input stimulated ammonification, we found no significant effect on protein depolymerization. Although our findings do not rule out in general that higher plant-soil C allocation can promote microbial N mining, they suggest that such an effect can be counteracted, at least in the short term, by increased microbial N immobilization, further aggravating plant N limitation.
-
Circum-Arctic patterns of terrestrial carbon remobilization reveal contrasting vulnerability between regions and carbon sources
Jannik Martens (et al.).
Show all publications by Birgit Wild at Stockholm University