Stockholm university

Karin NorénResearcher, Docent

About me

http://www.zoologi.su.se/research/alopex/

Publications

A selection from Stockholm University publication database

  • Genomic and fitness consequences of inbreeding in an endangered carnivore

    2021. Malin Hasselgren (et al.). Molecular Ecology 30 (12), 2790-2799

    Article

    Reduced fitness through genetic drift and inbreeding is a major threat to small and isolated populations. Although previous studies have generally used genetically verified pedigrees to document effects of inbreeding and gene flow, these often fail to capture the whole inbreeding history of the species. By assembling a draft arctic fox (Vulpes lagopus) genome and resequencing complete genomes of 23 additional foxes born before and after a well-documented immigration event in Scandinavia, we here look into the genomic consequences of inbreeding and genetic rescue. We found a difference in genome-wide diversity, with 18% higher heterozygosity and 81% lower F-ROH in immigrant F1 compared to native individuals. However, more distant descendants of immigrants (F2, F3) did not show the same pattern. We also found that foxes with lower inbreeding had higher probability to survive their first year of life. Our results demonstrate the important link between genetic variation and fitness as well as the transient nature of genetic rescue. Moreover, our results have implications in conservation biology as they demonstrate that inbreeding depression can effectively be detected in the wild by a genomic approach.

    Read more about Genomic and fitness consequences of inbreeding in an endangered carnivore
  • Genomic trajectories of a near-extinction event in the Chatham Island black robin

    2022. Johanna von Seth (et al.). BMC Genomics 23

    Article

    Background: Understanding the micro-­evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation.

    Results: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations.

    Conclusion: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.

    Read more about Genomic trajectories of a near-extinction event in the Chatham Island black robin

Show all publications by Karin Norén at Stockholm University