Stockholm university

Luc Timothée MiazPhD student

About me

I'm from Switzerland. My background is in Mathematics, Statistics and Environmental Science. I have a strong interests in Social Science and Philosophy and their intersection with environmental issues.

Teaching

Autumn semester 2023

System dynamics, life cycle analysis and modelling (teaching assistant)

Research

My PhD project aims to better understand the PFAS universe using cheminformatics and machine learning. My research integrates in the zeroPM project funded by EU’s Horizon 2020 programme.

Research projects

Publications

Poster

Database of Alternatives to PFAS based on the Functional Substitution Approach. https://doi.org/10.5281/zenodo.8318026

A selection from Stockholm University publication database

  • Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters

    2021. Derek Muir, Luc T. Miaz. Environmental Science and Technology 55 (14), 9527-9537

    Article

    Per- and polyfluoroalkyl substances (PFAS) have been widely detected in global surface waters since the early 2000s. Here, we have compiled and analyzed the published data for perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs) in surface waters of coastal seas, the Great Lakes, and open oceans to examine temporal and geospatial trends. Mass discharges from major rivers were also estimated. A large number of measurements of individual PFAS have been made in these surface waters (29 500 values), with seven C4-C10 PFSAs and nine C4-C12 PFCAs accounting for 83% of all data. However, most results (85% for PFSAs; 80% for PFCAs) were for the coastal seas of Western Europe, China, Korea, and Japan, while results were limited for coastal North America and lacking for South America and Africa. Highest median concentrations of PFCAs and PFSAs were reported in the Bohai and Yellow Seas region of China as well as in the North and Baltic seas in Europe. Significant declines in median PFSAs and C7-C12 PFCAs were also observed for the period 2012-2018 in these same regions, and for 2004-2017 in the Great Lakes. Mass discharge estimates indicated continued substantial riverine emissions of long chain (C7-C12) PFCAs in the period 2015-2019 for the coastal seas of China and reductions in emissions for Western European rivers compared to earlier time periods.

    Read more about Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters
  • Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996–2017

    2020. Luc T. Miaz (et al.). Environmental Science 22 (4), 1071-1083

    Article

    A combined method for quantitative analysis, along with suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) was developed using ultra-high pressure liquid chromatography-ultra-high resolution (Orbitrap) mass spectrometry. The method was applied together with measurements of total- and extractable organofluorine (TF and EOF, respectively), to pooled serum samples from 1996–2017 from first-time mothers living in the county of Uppsala, Sweden, some of which (i.e. 148 of 472 women sampled 1996–2012) were exposed to drinking water contaminated with perfluorohexane sulfonate (PFHxS) and other PFAS until mid-2012. Declining trends were observed for all target PFAS as well as TF, with homologue-dependent differences in year of onset of decline. Only 33% of samples displayed detectable EOF, and amongst these samples the percentage of EOF explained by target PFAS declined significantly (−3.5% per year) over the entire study period. This finding corroborates prior observations in Germany after the year 2000, and may reflect increasing exposure to novel PFAS which have not yet been identified. Suspect screening revealed the presence of perfluoro-4-ethylcyclohexanesulfonate (PFECHS), which displayed declining trends since the year 2000. Non-target time trend screening revealed 3 unidentified features with time trends matching PFHxS. These features require further investigation, but may represent contaminants which co-occurred with PFHxS in the contaminated drinking water.

    Read more about Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996–2017

Show all publications by Luc Timothée Miaz at Stockholm University