Sampath Deegalla
Publications
A selection from Stockholm University publication database
-
Random subspace and random projection nearest neighbor ensembles for high dimensional data
2022. Sampath Deegalla (et al.). Expert systems with applications 191
ArticleThe random subspace and the random projection methods are investigated and compared as techniques for forming ensembles of nearest neighbor classifiers in high dimensional feature spaces. The two methods have been empirically evaluated on three types of high-dimensional datasets: microarrays, chemoinformatics, and images. Experimental results on 34 datasets show that both the random subspace and the random projection method lead to improvements in predictive performance compared to using the standard nearest neighbor classifier, while the best method to use depends on the type of data considered; for the microarray and chemoinformatics datasets, random projection outperforms the random subspace method, while the opposite holds for the image datasets. An analysis using data complexity measures, such as attribute to instance ratio and Fisher’s discriminant ratio, provide some more detailed indications on what relative performance can be expected for specific datasets. The results also indicate that the resulting ensembles may be competitive with state-of-the-art ensemble classifiers; the nearest neighbor ensembles using random projection perform on par with random forests for the microarray and chemoinformatics datasets.
-
Choice of Dimensionality Reduction Methods for Feature and Classifier Fusion with Nearest Neighbor Classifiers
2012. Sampath Deegalla, Henrik Boström, Keerthi Walgama. 15th International Conference on Information Fusion, 875-881
ConferenceOften high dimensional data cause problems for currently used learning algorithms in terms of efficiency and effectiveness. One solution for this problem is to apply dimensionality reduction by which the original feature set could be reduced to a small number of features while gaining improved accuracy and/or efficiency of the learning algorithm. We have investigated multiple dimensionality reduction methods for nearest neighbor classification in high dimensions. In previous studies, we have demonstrated that fusion of different outputs of dimensionality reduction methods, either by combining classifiers built on reduced features, or by combining reduced features and then applying the classifier, may yield higher accuracies than when using individual reduction methods. However, none of the previous studies have investigated what dimensionality reduction methods to choose for fusion, when outputs of multiple dimensionality reduction methods are available. Therefore, we have empirically investigated different combinations of the output of four dimensionality reduction methods on 18 medicinal chemistry datasets. The empirical investigation demonstrates that fusion of nearest neighbor classifiers obtained from multiple reduction methods in all cases outperforms the use of individual dimensionality reduction methods, while fusion of different feature subsets is quite sensitive to the choice of dimensionality reduction methods.
-
Classification of Microarrays with kNN: Comparison of Dimensionality Reduction Methods
2007. Sampath Deegalla, Henrik Boström. Intelligent Data Engineering and Automated Learning - IDEAL 2007, 800-809
ConferenceDimensionality reduction can often improve the performance of the k-nearest neighbor classifier (kNN) for high-dimensional data sets, such as microarrays. The effect of the choice of dimensionality reduction method on the predictive performance of kNN for classifying microarray data is an open issue, and four common dimensionality reduction methods, Principal Component Analysis (PCA), Random Projection (RP), Partial Least Squares (PLS) and Information Gain(IG), are compared on eight microarray data sets. It is observed that all dimensionality reduction methods result in more accurate classifiers than what is obtained from using the raw attributes. Furthermore, it is observed that both PCA and PLS reach their best accuracies with fewer components than the other two methods, and that RP needs far more components than the others to outperform kNN on the non-reduced dataset. None of the dimensionality reduction methods can be concluded to generally outperform the others, although PLS is shown to be superior on all four binary classification tasks, but the main conclusion from the study is that the choice of dimensionality reduction method can be of major importance when classifying microarrays using kNN.
Show all publications by Sampath Deegalla at Stockholm University