Profiles

Ken Inge profile

Andrew Kentaro Inge

Researcher

View page in English
Arbetar vid Institutionen för material- och miljökemi
E-post andrew.inge@mmk.su.se
Besöksadress Svante Arrhenius väg 16 C
Rum C 570
Postadress Institutionen för material- och miljökemi 106 91 Stockholm

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2019. Stephan Wöhlbrandt (et al.). Zeitschrift für Anorganische und Allgemeines Chemie 645 (10), 732-739

    The bifunctional linker molecule [5-(phosphonomethyl)-2,4-bis(sulfonomethyl)phenyl]methanesulfonic acid (HO3S-CH2)(3)-C6H2-CH2PO3H2 (abbreviated as H(5)L4) was employed in systematic high-throughput investigations in order to discover new coordination polymers (CPs). Employing 27 metal salts of 17 different metals in this investigation, five new compounds [Mg-2(HL4)(H2O)(6)] (1), [Pb-4(L4)(OH)(3)] (2), [Ba-2(H(2)L4)(OH)(H2O)] (3), [Ba-2(HL4)(H2O)(4)] (4), and [Cd-2,Cd-5(L4)(H2O)(7)] (5) were discovered and their crystal structures were determined. In all compounds, the sulfonate and phosphonate groups could not be resolved since the P and S atoms are statistically occupying the atom site with a ratio of 0.25 to 0.75. This is reflected in the P-O and S-O bond lengths. Four of the structures were determined from single-crystal X-ray diffraction data, whereas the structure of 4 was solved ab initio from powder data using real-space methods and refined using Rietveld methods.

  • 2019. Vlad Pascanu (et al.). Journal of the American Chemical Society 141 (18), 7223-7234

    Recent advances in organic chemistry and materials chemistry have enabled the porosity of new materials to be accurately controlled on the nanometer scale. In this context, metal-organic frameworks (MOFs) have rapidly become one of the most attractive classes of solid supports currently under investigation in heterogeneous catalysis. Their unprecedented degree of tunability gives MOFs the chance to succeed where others have failed. The past decade has witnessed an exponential growth in the complexity of new structures. MOFs with a variety of topologies and pore sizes show excellent stability across wide ranges of pH and temperature. Even the controlled insertion of defects, to alter the MOF's properties in a predictable manner, has become commonplace. However, research on catalysis with MOFs has been sluggish in catching up with modern trends in organic chemistry. Relevant issues such as enantioselective processes, C-H activation, or olefin metathesis are still rarely discussed. In this Perspective, we highlight meritorious examples that tackle important issues from contemporary organic synthesis, and that provide a fair comparison with existing catalysts. Some of these MOF catalysts already outcompete state-of-the-art homogeneous solutions. For others, improvements may still be required, but they have merit in aiming for the bigger challenge. Furthermore, we also identify some important areas where MOFs are likely to make a difference, by addressing currently unmet needs in catalysis instead of trying to outcompete homogeneous catalysts in areas where they excel. Finally, we strongly advocate for rational design of MOF catalysts, founded on a deep mechanistic understanding of the events taking place inside the pore.

  • 2019. Ning Yuan (et al.). Catalysis Science & Technology 9 (8), 2025-2031

    In situ X-ray absorption spectroscopy (XAS) investigations have been performed to provide insights into the reaction mechanism of a palladium(II) catalyzed undirected C–H acetoxylation reaction in the presence of an oxidant. A Pd(II) N-heterocyclic carbene complex p-stacked onto reduced graphene oxide (rGO) was used as catalyst. The Pd speciation during the catalytic process was examined by XAS, which revealed a possible mechanism over the course of the reaction. Pd(II) complexes in the as-synthesized catalyst first go through a gradual ligand substitution where chloride ions bound to Pd(II) are replaced by other ligands with a bond distance to Pd corresponding to carbon, nitrogen and/or oxygen (L). Parallel to this the mean oxidation state of Pd increases indicating the formation of Pd(IV) species. At a later stage, a fraction of the Pd complexes start to slowly transform into Pd nanoclusters. The mean average oxidation state of Pd decreases to the initial state at the end of the experiment which means that comparable amounts of Pd(0) and Pd(IV) are present. These observations from heterogeneous catalysis are in good agreement with its homogeneous analog and they support a Pd(II)-Pd(IV)-Pd(II) reaction mechanism.

  • Ning Yuan (et al.).
  • 2018. Bin Wang (et al.). Chemistry - A European Journal 24 (66), 17429-17433

    Single-crystal electron diffraction has shown to be powerful for structure determination of nano- and submicron-sized crystals that are too small to be studied by single-crystal X-ray diffraction. However, it has been very challenging to obtain high quality electron diffraction data from beam sensitive crystals such as metal-organic frameworks (MOFs). It is even more difficult to locate guest species in the pores of MOF crystals. Here, we present synthesis of a novel porous cobalt MOF with 1D channels, [Co-2(Ni-H4TPPP)]center dot 2DABCO center dot 6H(2)O, (denoted Co-CAU-36; DABCO=1,4-diazabicyclo[2.2.2]octane), and its structure determination using continuous rotation electron diffraction (cRED) data. By combining a fast hybrid electron detector with low sample temperature (96 K), high resolution (0.83-1.00 angstrom) cRED data could be obtained from eight Co-CAU-36 crystals. Independent structure determinations were conducted using each of the eight cRED datasets. We show that all atoms in the MOF framework could be located. More importantly, we demonstrate for the first time that organic molecules in the pores, which were previously difficult to find, could be located using the cRED data. A comparison of eight independent structure determinations using different datasets shows that structural models differ only on average by 0.03(2) angstrom for the framework atoms and 0.10(6) and 0.16(12) angstrom for DABCO and water molecules, respectively.

  • 2018. Man-Bo Li (et al.). Journal of the American Chemical Society 140 (44), 14604-14608

    A palladium-catalyzed oxidative tandem process of enallenols was accomplished within a homogeneous/heterogeneous catalysis manifold, setting the stage for the highly chemodivergent and diaster-eoselective synthesis of gamma-lactones and gamma-lactams under mild conditions.

  • 2018. Linqin Wang (et al.). Chemical Communications 54 (69)

    Two novel dopant-free hole-transport materials (HTMs) with spiro[dibenzo[c,h]xanthene-7,9-fluorene] (SDBXF) skeletons were prepared via facile synthesis routes. A power conversion efficiency of 15.9% in perovskite solar cells is attained by using one HTM without dopants, which is much higher than undoped Spiro-OMeTAD-based devices (10.8%). The crystal structures of both new HTMs were systematically investigated to reveal the reasons behind such differences in performance and to indicate the design principles of more advanced HTMs.

  • 2018. Jurjen Spekreijse, Andrew Kentaro Inge, Lars Öhrström. Israel Journal of Chemistry 58 (9-10), 1127-1130

    Vanillic acid, C8H8O4, is a possible product from a future biorefinery with lignin as raw material. Two coordination compounds with this ligand in two different protonation states were prepared: 1 [Zn(C8H7O4)(2)(H2O)(2)] and 2 [Co-2(C8H6O4)(2)(H2O)(6)] 2H(2)O. Both compounds form extended 3D structures with strong hydrogen bonds. A high symmetry 8- and 4-connected network topology, jus, is found in 1. The dinuclear coordination entity in 2 hints at a potentially useful SBU for MOF synthesis from lignin based bridging ligands.

  • 2018. Yansong Ren (et al.). Journal of the American Chemical Society 140 (42), 13640-13643

    Multistimuli-responsive enaminitrile-based configurational switches displaying aggregation-induced emission (AIE), fluorescence turn-on effects, and super gelation properties are presented. The E-isomers dominated (>97%) in neutral/basic solution, and the structures underwent precisely controlled switching around the enamine C=C bond upon addition of acid/base. Specific fluorescence output was observed in response to different external input in the solution and solid states. In response to H+, configurational switching resulted in complete formation of the nonemissive Z-H+-isomers in solution, however displaying deep-blue to blue fluorescence (Phi(F) up to 0.41) in the solid state. In response to Cu-II in the solution state, the E-isomers exhibited intense, turn-on, blue-green fluorescence, which could be turned off by addition of competitive coordination. The acid/base-activated switching, together with the induced AIE-effects, further enabled the accomplishment of a responsive superorganogelator. In nonpolar solvents, a blue-fluorescent supramolecular gel was formed upon addition of acid to the E-isomer suspension. The gelation could be reversed by addition of base, and the overall, reversible process could be repeated at least five cycles.

  • 2018. Ning Yuan (et al.). Journal of the American Chemical Society 140 (26), 8206-8217

    The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance (H-1 NMR) kinetic studies. A custom-made reaction cell was used, allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is proposed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl- ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.

  • 2018. Milan Koeppen (et al.). Crystal Growth & Design 18 (7), 4060-4067

    Systematic solvent screening using high-throughput solvothermal syntheses with bismuth nitrate pentahydrate and 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (H4TCPB) led to three new porous Bi-metal-organic frameworks [Bi-2(H2TCPB)(TCPB)(H2O)(2)]center dot xH(2)O (CAU-31), (NH2(CH3)(2) [Bi(TCPB)(H2O)]center dot xH(2)O (CAU-32), and [Bi-4(O)(2)(OH)(2)(H2TCPB)(TCPB)(H2O)(2)]center dot xH(2)O (CAU-33). Compounds CAU-31, -32, and -33 were synthesized in CH3OH, CH3OH/DMF, and DMF/toluene, respectively. The crystal structures were determined using electron diffraction and single-crystal X-ray diffraction in combination with the Rietveld method. The structures of CAU-31 and CAU-32 are composed of isolated Bi3+ ions as the inorganic building unit (IBU), which are connected by the linker ions to form a layered structure with inclined interpenetration and a three-dimensional anionic network, respectively. The IBU of CAU-33 consists of infinite bismuth-oxo rods forming a three-dimensional network by connection of the organic linkers. For CAU-33 structural flexibility was observed, and two phases denoted alpha- and beta-CAU-33 could be isolated.

  • 2018. Milan Köppen (et al.). European Journal of Inorganic Chemistry (30), 3496-3503

    Very few microporous bismuth metal-organic frameworks have been discovered to date. Of these, no detailed experimental characterization of the synthesis and properties have been reported until now for the only one which can be prepared from inexpensive starting materials: CAU-17 [Bi(BTC)(H2O)], with H3BTC = trimesic acid. In-situ powder X-ray diffraction during solvothermal synthesis of CAU-17 revealed that it crystallizes rapidly within 2 minutes, and if the reaction is not stopped, the MOF transforms into a nonporous dense purely inorganic material within one hour, revealing that CAU-17 is a crystalline intermediate phase. Synthesis scale-up employing more concentrated reaction mixtures resulted in another Bi trimesate of composition [Bi(HBTC)(NO3)(MeOH)]MeOH, which structurally decomposes upon storage under ambient conditions. Sorption experiments showed that CAU-17 is microporous with a BET surface area of 530 m(2)/g. As a potential greenhouse gas sorbent, CAU-17 showed high SF6/N-2 and CO2/N-2 selectivity > 31 and 29, respectively. Furthermore, the catalytic activity of CAU-17 was studied in the regioselective ring-opening of styrene oxide by methanol to obtain 2-methoxy-2-phenylethanol, thus demonstrating the existence of coordinatively unsaturated sites in the crystal structure of CAU-17.

  • 2018. Marta Vico Solano (et al.). ChemCatChem 10 (5), 1089-1095

    Herein, we report a versatile carbonylation protocol using heterogeneous Pd-0 nanoparticles supported on the metal-organic frameworks (MOFs) MIL-88B-NH2 (Fe/Cr). The synthesis of a vast array of carbonyls, which includes amides, esters, carboxylic acids, and -ketoamides, was achieved through mono- and dicarbonylation reactions. The selectivity could be controlled simply by tuning the reaction conditions. Superior activity and selectivity were recorded in some cases compared to that achieved with commercial Pd/C. However, the utility of an elaborate catalyst support is questionable and important reactivity and recyclability issues are discussed.

  • 2017. Yunchen Wang (et al.). Chemical Communications 53 (52), 7018-7021

    Bismuth subgallate has been used in wound and gastrointestinal therapy for over a century. The combination of continuous rotation electron diffraction and sample cooling finally revealed its structure as a coordination polymer. The structure provides insight regarding its formula, poor solubility, acid resistance and previously unreported gas sorption properties.

  • 2017. Ahmed S. Etman (et al.). Electrochimica Acta 252, 254-260

    Ultrathin hydrated vanadium pentoxide (V2O5 center dot nH(2)O) nanosheets are fabricated via a water based exfoliation technique. The exfoliation process involves reflux of the precursor, 1:4 mixture of VO2 and V2O5, in water at 80 degrees C for 24 h. Operando and ex situ X-ray diffraction (XRD) studies are conducted to follow the structural changes during the exfoliation process. The chemical and thermal analyses suggest that the molecular formula of the nanosheet is (H0.2V1.8V0.2O5)-V-V-O-IV center dot 0.5H(2)O. The V2O5 center dot nH(2)O nanosheets are mixed with 10% of multi-walled carbon nanotube (MW-CNT) to form a composite material assigned as (VOx-CNT). Free standing electrodes (FSE) and conventionally casted electrodes (CCE) of VOx-CNT are fabricated and then tested as a positive electrode material for lithium batteries. The FSE shows reversible capacities of 300 and 97 mAhg(-1) at current densities of 10 and 200 mAhg(-1), respectively. This is better than earlier reports for free-standing electrodes. The CCE delivers discharge capacities of 175 and 93 mAhg(-1) at current densities of 10 and 200 mAhg(-1), respectively.

  • 2017. N. Heidenreich (et al.). Review of Scientific Instruments 88 (10)

    A new versatile and easy-to-use remote-controlled reactor setup aimed at the analysis of chemical reactions under solvothermal conditions has been constructed. The reactor includes a heating system that can precisely control the temperature inside the reaction vessels in a range between ambient temperature and 180 degrees C. As reaction vessels, two sizes of commercially available borosilicate vessels (V-max = 5 and 11 ml) can be used. The setup furthermore includes the option of stirring and injecting of up to two liquid additives or one solid during the reaction to initiate very fast reactions, quench reactions, or alter chemical parameters. In addition to a detailed description of the general setup and its functionality, three examples of studies conducted using this setup are presented.

  • 2017. Martin Krüger (et al.). Microporous and Mesoporous Materials 249, 128-136

    The systematic investigation of the solvothermal system Al3+/5-fluoroisophthalic acid (H(2)mBDC-5F)/isophthalic acid (H(2)mBDC)/DMF/H2O through a mixed-linker approach led to new mixed-linker CAU-10 derivatives containing 11, 28 and 44% of fluorinated linker molecules (denoted as CAU-10-H/F-11, CAU-10-H/F-28 and CAU-10-H/F-44, respectively), as determined by NMR spectroscopy. The crystal structure of CAU-10-H/F-28 was determined using the Rietveld method (space group 14(1)md, a = b = 21.3075(5), c = 10.7101(3) angstrom). The structure is built up by helical chains composed of cis corner-sharing AlO6 polyhedra. Each of these helices is interconnected to four adjacent helices with alternating rotational orientation through the carboxylate groups of mBDC(2-) linker molecules. Thus, accessible, square-shaped channels are formed. Sorption measurements revealed a high dependency of the adsorbed amount of gas on the degree of fluorination. With increasing fluorination, the total uptake decreases in N-2, H-2 and H2O sorption experiments and the hydrophobic character of the pores increases. In addition, an extended CAU-10 derivative, CAU-10-HTATB, was discovered using the tricarboxylic acid 4,4',4-s-triazine-2,4,6-triyl-tribenzoic acid (H(3)TATB) during the high-throughput investigation of the system Al3+/H(3)TATB/DMF/H2O. This new MOF, which was denoted CAU-10-HTATB, was thoroughly characterized using IR spectroscopy, thermogravimetric and elemental analysis, temperature dependent powder X-ray diffraction (PXRD) and sorption measurements. Although the compound is thermally stable up to 400 degrees C according to temperature-dependent PXRD measurements, it is not porous towards N2 molecules. The structure of CAU-10-HTATB could be also refined from PXRD data using the Rietveld method (space group l4(1)/a, a = b = 36.438 (1), c = 10.9373 (9) angstrom).

  • 2017. Martin Krüger (et al.). CrystEngComm 19 (31), 4622-4628

    Three new In-MOFs with -NH2 and/or -NO2 functionalities are reported using 2-amino-(H2BDC-NH2), 2-nitro-(H2BDC-NO2) and 2-amino-5-nitroterephthalic acid (H2BDC-NH2/NO2). Their structures were determined from single crystal X-ray diffraction data. The structure of the first In-MOF of composition [In(BDC-NH3)(BDC-NH2)] center dot 1.6DMF center dot 1.9H(2)O (In-BDC-NH2;DMF is dimethylformamide; the space group is P6(2)22, a = b = 14.738(2) angstrom and c = 12.257(3) angstrom) is built up by two interpenetrating nets of InOB polyhedra interconnected by BDC-NH2 2-ions to form a framework with qtz topology. Charge balance is accomplished by partial protonation of the amino group, which was confirmed by IR spectroscopy. The interpenetration leads to a decrease of the pore dimension (4.4 angstrom in diameter). Thermogravimetric analysis revealed stability up to 300 degrees C. Replacement of H2BDC-NH2 by H2BDC-NO2 in the reaction mixture led to the iso-reticular MOF containing no -NO2 groups but exclusively un- and amino-functionalized linkers. Hence an indium mediated reduction of the H2BDC-NO2 linker molecule during solvothermal synthesis has occurred. The use of H2BDC-NH2/NO2 under exactly the same reaction conditions did not result in the formation of a MOF, but by changing the synthesis parameters, a new -NH2/-NO2 bifunctionalised In-MOF of composition (DMA)(2).In-3.mu(3)-O)(BDC-NH2/NO2) 4.5] center dot DMF (DMA is dimethylammonium), denoted In-BDC-NH2/NO2, was obtained. The crystal morphology can be altered from cubic to truncated octahedral crystals by varying the DMF/ethanol volume ratio during synthesis. The compound crystallises in the cubic space group I43m, a = 24.8947(1) angstrom, and the framework contains trinuclear {In-3.mu(3)-O)} clusters which are interlinked by the BDC-NH2/NO2 2-ions to form super-tetrahedra. Four face-sharing super-tetrahedra form ultra-tetrahedra which are connected to form the final cubic framework with an ncb topology and isolated inaccessible pores.

  • 2017. Martin Krüger (et al.). Inorganic Chemistry 56 (10), 5851-5862

    The in situ and systematic high-throughput investigation of the system Al3+/4,4'-benzophenonedicarboxylic acid (H2BPDC)/DMF/H2O in the presence of various additives was carried out, and a new Al-MOF of composition [Al(OH)(BPDC)], denoted as CAU-21-BPDC, was obtained. Its crystal structure was determined from single-crystal X-ray diffraction data (space group I422, a = b = 17.2528(7) angstrom, c = 23.864(1) angstrom). The structure is built up by octanuclear rings of cis corner-sharing AlO6 polyhedra forming the inorganic building unit (IBU). These {Al8O8} IBUs are arranged in a bcu packing and connected via BPDC2(-) ions in a way that each IBU is linked via two linker molecules to each of the eight adjacent IBUs. Thus, accessible, one-dimensional modulated pores with a diameter between 3.6 and 6.5 angstrom are formed. In addition, tetrahedral cavities are formed by the BPDC2(-) linker molecules. The framework of CAU-21-BPDC is polymorphous with that of CAU-8-BPDC, which contains one-dimensional chains of trans corner-sharing AlO6 polyhedra connected by BPDC2(-) ions. Replacing H2BPDC by 4,4'-oxydibenzoic acid (H2ODB), which contains an oxygen atom between the phenyl rings instead of a keto group, leads to the synthesis of Al-MOFs isoreticular with CAU-8-BPDC and CAU-21-BPDC. In addition, a coordination polymer, [Al(HODB)2(OH)], was discovered and structurally characterized. The structure of CAU-8-ODB was refined from powder X-ray diffraction data, while a Pawley refinement was carried out for CAU-21-ODB to determine the lattice parameters and confirm phase purity. The structure of CAU-21-ODB was confirmed using density functional theory (DFT) calculations. A thorough characterization shows that the CAU-8 and CAU-21-type structures are stable up to 350 and 300 degrees C in air, respectively, almost independent of the linker molecules incorporated. The former MOFs are porous toward N-2 and CO2, while the latter only adsorb CO2.

  • 2017. Martin Albat, Andrew Kentaro Inge, Norbert Stock. Zeitschrift für Kristallographie - Crystalline Materials 232 (1-3), 245-253

    Three new bismuth arylsulfonatocarboxylates [Bi(OH)(SB)] (1), [Bi-4(ST)(2)(HST)O-2(H2O)(2)]center dot H2O (2) and [Bi-4(ST)(2)O-3(H2O)(2)] (3) were synthesized under solvothermal reaction conditions at 180 degrees C using the potassium or sodium salt of 4-sulfobenzoic acid (H2SB) and 2-sulfoterephthalic acid (H3ST), respectively. The compounds were characterized in detail and the crystal structures were determined from single crystal X-ray diffraction data. Phase purity was confirmed by powder X-ray diffraction and elemental analysis. Structural comparisons to the only three other known bismuth sulfonatocarboxylates are presented. Due to the higher reaction temperatures employed for the synthesis of the title compounds a higher degree of condensation of the BiOx polyhedra (X = 7 or 8) to tetrameric units, 1D chains or a 2D layer is observed. Connection through the organic linker molecules leads to the formation of 3D coordination polymers in all three title compounds.

  • 2016. Andrew Kentaro Inge (et al.). Journal of the American Chemical Society 138 (6), 1970-1976

    A bismuth-based metal-organic framework (MOP), [Bi(BTC)(H2O)]center dot 2H(2)O center dot MeOH denoted CAU-17, was synthesized and found to have an exceptionally complicated structure with helical Bi-O rods cross-linked by 1,3,5-benzenetricarboxylate (BTC3-) ligands. Five crystallographically independent 1D channels including two hexagonal channels, two rectangular channels, and one triangular channel have accessible diameters of 9.6, 9.6, 3.6, 3.6, and 3.4 angstrom, respectively. The structure is further complicated by twinning. Rod-incorporated MOF structures typically have underlying nets with only one unique node and three or four unique edges. In contrast, topological analysis of CAU-17 revealed unprecedented complexity for a MOF structure with 54 unique nodes and 135 edges. The complexity originates from the rod packing and the rods themselves, which are related to aperiodic helices.

  • 2016. A. Ken Inge (et al.). Crystal Growth & Design 16 (12), 6967-6973

    A novel open-framework germanate, vertical bar NC2H8 vertical bar vertical bar N2C6H18 vertical bar, [Ge7O14.5F2].4H(2)O denoted SU-65 (SU = Stockholm University), with 24-ring channels and a very low framework density of 8.9 Ge atoms per 1000 angstrom(3) was synthesized under hydro-solvothermal conditions. The framework of SU-65 is built of 5-connected Ge-7 clusters decorating the fee net and is a framework orientation isomer to ASU-16. Half of the 8- and 12-rings in ASU-16 are instead 10-rings in SU-65 due to the different orientations of half of the clusters in the crystal structure. Flexibility of the frameworks is also influenced by the orientation of the clusters. The unique unit cell angle in SU-65 changes upon heating, unlike ASU-16 which only undergoes changes in unit cell lengths. SU-65 undergoes significant structural changes at 180 degrees C in a vacuum, forming SU-65ht. The crystal structure of SU-65ht was investigated by rotation electron diffraction, X-ray powder diffraction, and infrared spectroscopy. Through these techniques it was deduced that SU-65ht has similar clusters, symmetry, and topology as SU-65, but one of the unit cell lengths is shortened by approximately 5 A. This corresponds to a 22% decrease in unit cell volume.

  • 2016. Seida Halis (et al.). Inorganic Chemistry 55 (15), 7425-7431

    Two new dihydroxybenzoquinone-based metal-organic frameworks, ((CH3)(2)NH2)(3)[Al-4(L1)(3)(L1(center dot))(3)]center dot 3DMF (1, denoted CAU - 20) and ((CH3)(2)NH2)(3)[Al-4(L2)(3)(L2 center dot)(3)]center dot 9DMF (2, denoted CAU-20-Cl-2), were synthesized at 120 degrees C in PAU using 2,5-dihydroxy-p-benzoquinone ((C6H2(OH)(2)(O)(2)), H(2)L1) and 2,5-dichloro-3,6-dihydroxy-p-benzoquinone ((C6Cl2(OH)(2)(O)(2)), H(2)L2), respectively. Compared to other Al-MOFs, which contain carboxylate or phosphonate groups that connect the metal sites, in 1 and 2 the Al3+ are coordinated by oxido groups. The metal ions are octahedrally surrounded by oxygen atoms Of the deprotonated linker molecules to generate honeycomb layers with a metal to linker ratio of Al: L1/L2 = 2:3. The layers contain L1(2-) and L2(2-) ions as well as linker radical ions L1(center dot 3-) and L2(center dot 3-) in a molar ratio of 1 to 1. The presence of radical ions was confirmed by EPR and UV-vis-spectroscopic Measurements, and the composition was determined from a combination of PXRD, H-1, NMR, TG, and elemental analyses. Charge balance is accomplished through intercalation of (CH3)(2)NH2+ ions which are formed by partial hydrolysis of DMF. In the structures of 1 and 2 the eclipsed layers are AA and ABAB stacked, respectively, and one-dimensional hexagonal channels with diameters of ca. 9 and 6 angstrom are formed. Both compounds exhibit permanent porosity and have specific surface areas of 1440 and 1430 m(2) g(-1), respectively.

  • 2013. A. Ken Inge (et al.). Journal of applied crystallography 46, 1094-1104

    The crystal structure of a novel open-framework gallogermanate, SU-66 {|(C6H18N2)(18)(H2O)(32)|[Ga4.8Ge87.2O208]}, has been solved from laboratory X-ray powder diffraction (XPD) data by using a direct-space structure solution algorithm and local structural information obtained from infrared (IR) spectroscopy. IR studies on 18 known germanates revealed that the bands in their IR spectra were characteristic of the different composite building units (CBUs) present in the structures. By comparing the bands corresponding to Ge-O vibrations in the IR spectra of SU-66 with those of the 18 known structures with different CBUs, the CBU of SU-66 could be identified empirically as the Ge-10(O,OH)(27) cluster (Ge-10). The unit cell and space group (extinction symbol P--a; a = 14.963, b = 31.593, c = 18.759 angstrom) were determined initially from the XPD pattern and then confirmed by selected-area electron diffraction. The structure of SU-66 was solved from the XPD data using parallel tempering as implemented in FOX [Favre-Nicolin & Cerny (2002). J. Appl. Cryst. 35, 734-743] by assuming P2(1)ma symmetry and two Ge-10 clusters in the asymmetric unit. Rietveld refinement of the resulting structure using synchrotron XPD data showed the framework structure to be correct and the space group to be Pmma. The framework has extra-large (26-ring) onedimensional channels and a very low framework density of 10.1 Ge/Ga atoms per 1000 angstrom(3). SU-66, with 55 framework atoms in the asymmetric unit, is one of the more complicated framework structures solved from XPD data. Indeed, 98% of the reflections were overlapping in the XPD pattern used for structure solution. Tests on other open-framework germanates (SU-62, SU-65, SU-74, PKU-12 and ITQ-37) for which the XPD data, unit cell, space group and IR spectra were available proved to be equally successful. In a more complex case (SU-72) the combination of FOX and powder charge flipping was required for structure solution.

  • 2013. Lianpeng Tong (et al.). Inorganic Chemistry 52 (5), 2505-2518

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru-II(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru-II(bpc)(pic)(3)](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce-IV as an electron acceptor, both complexes are able to catalyze O-2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce-IV was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2 ''-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra.

  • 2013. Andrew Kentaro Inge, Xiaodong Zou. Nanoporous Materials
  • 2012. Agnieszka Bartoszewicz (et al.). Chemistry - A European Journal 18 (45), 14510-14519

    A series of new iridium(III) complexes containing bidentate N-heterocyclic carbenes (NHC) functionalized with an alcohol or ether group (NHC?OR, R=H, Me) were prepared. The complexes catalyzed the alkylation of anilines with alcohols as latent electrophiles. In particular, biscationic IrIII complexes of the type [Cp*(NHC-OH)Ir(MeCN)]2+2[BF4-] afforded higher-order amine products with very high efficiency; up to >99?% yield using a 1:1 ratio of reactants and 12.5 mol?% of Ir, in short reaction times (216 h) and under base-free conditions. Quantitative yields were also obtained at 50?degrees C, although longer reaction times (4860 h) were needed. A large variety of aromatic amines have been alkylated with primary and secondary alcohols. The reactivity of structurally related iridium(III) complexes was also compared to obtain insights into the mechanism and into the structure of possible catalytic intermediates. The IrIII complexes were stable towards oxygen and moisture, and were characterized by NMR, HRMS, single-crystal X-ray diffraction, and elemental analyses.

  • 2012. Liqiu Tang (et al.). Crystal Growth & Design 12 (7), 3714-3719

    A novel open-framework silicogermanate SU-JU-14 (Stockholm University-Jilin University-Number 14), vertical bar NH3CH2CH2NH3 vertical bar(3)[Ge6.40Si0.60O15(OH)](2)[Ge0.73Si3.27O8], was synthesized by using ethylenediamine as the structure-directing agent under solvothermal conditions. Single-crystal structure analysis reveals that the crystal structure of SU-JU-14 consists of extended 24-ring channels built from [(Ge,Si)(7)O12O6/2(OH)](3-) [(Ge,Si)(7)] clusters and unbranched zweier silica double chains [Ge0.73Si3.27O4O8/2]. Charge neutrality is achieved by diprotonated ethylenediamine guest molecules. The structure consists of stacking faults of layered arrays in two different configurations along the a-axis. SU-JU-14 was characterized by X-ray diffraction, X-ray energy dispersive spectroscopy, scanning electron microscopy, nuclear magnetic resonance, inductively coupled plasma, and thermogravimetric analyses. Crystallographic data: monoclinic, space group C2/c, and unit cell parameters: a = 35.625 (7) angstrom, b = 28.580 (6) angstrom, c = 10.403 (2) angstrom, and beta = 98.30 (3)degrees.

  • Andrew Kentaro Inge (et al.). CrystEngComm
  • Avhandling (Dok) Open-Framework Germanates
    2012. Andrew Kentaro Inge, Xiaodong Zou, Anthony Cheetham.

    Novel open-framework germanates and open low-dimensional structures were synthesized and characterized. Their crystal structures were solved by single crystal X-ray diffraction or X-ray powder diffraction combined with other techniques. Although related open-framework materials, such as zeolites, are of interest for the ability to selectively accommodate guest species in their rings, pores and channels, germanates are primarily of interest for their unique structural properties. Compared to aluminosilicate-based zeolites, germanium oxides readily form frameworks with extra-large rings and low framework density. The formation of elegant germanate architectures is attributed to the unique Ge-O bond geometries compared to Si-O, and the tendency to form large clusters.

    This thesis is to serve as an introduction to germanate synthesis, structures and characterization. Structures are categorized in accordance to their building units; the Ge7X19 (Ge7), Ge9X25-26 (Ge9) and Ge10X28 (Ge10) (X = O, OH, or F) clusters. Structure determination techniques as well as the characterization techniques used to examine the properties of the materials are presented. While most of the discussed techniques have routinely been used to study crystalline open-frameworks, we introduce the use of infrared spectroscopy for the identification of cluster types, valuable for structure determination by X-ray powder diffraction. Structures and properties of the novel materials ASU-21, SU-62, SU-63, SU-64, SU-65, SU-66, SU-71, SU-72, SU-73, SU-74, SU-75 and SU-JU-14 are described and put into context with previously known structures. The novel structures are all built of the Ge7, Ge9 or Ge10 clusters, and vary from a framework with novel topology to the first open zero-dimensional germanate cavities built of such clusters.

  • Artikel SU-62
    2012. Andrew Kentaro Inge (et al.). Crystal Growth & Design 12 (1), 369-375

    A novel 3D open-framework germanate, vertical bar N(2)C(4)H(14)vertical bar(4) [Ge(20)O(41)(OH)(6)]center dot 3H(2)O (SU-62), was prepared from hydrothermal synthesis using 1,4-diaminobutane as the organic structure directing agent (SDA). The crystal structure was solved by single crystal X-ray diffraction. The framework is built from Ge(10)(O,OH)(27) (Ge(10)) secondary building units and exhibits an irregular three-dimensional channel system encircled by 10- and 14-rings. The framework of SU-62 has an underlying topology that follows a novel five-coordinated svh-5-I4(1)/amd net, while the pores follow the tsi net. The thermal behavior of SU-62 was studied by thermogravimetric (TG) analysis and in situ X-ray diffraction (XRPD). Crystallographic data: orthorhombic, space group Fdd2, unit cell parameters a = 15.297(3) angstrom, b = 53.58(1) angstrom, c = 14.422(3) angstrom, V = 11821(4) angstrom(3), Z = 8.

  • Artikel SU-75
    2012. Shiliang Huang (et al.). Dalton Transactions 41 (40), 12358-12364

    A disordered open-framework germanate, denoted as SU-75, was synthesized under hydrothermal conditions using diethylenetriamine (dien) or alternatively 1,4-diaminobutane (dab) as the structure directing agent (SDA). SU-75 crystallizes in a tetragonal space group I-42d(No. 122) with a= 18.145(3) Å and c= 41.701(9) Å. The three-dimensional (3D) framework is built from Ge10(O,OH)28(Ge10) clusters that are connected following the pcu ( primitive cubic) net topology. SU-75 has 10-, 11- and 12-ring channels along the a- and b-axes and channels with alternating 8-, 10-, 12-, 10-ring openings along the c-axis. The framework exhibits a serious disorder, resulted from two possible connectivities between the units of four Ge 10clusters (4Ge10 unit). The chemical formula of SU-75 is |(H2SDA)2(H2O)n|[Ge10O21(OH)2] (SDA = dien or dab,n= 5–6), determined by combining single crystalsynchrotron X-ray diffraction, thermogravimetric analysis (TGA) and CHN elemental analysis. A superoctahedron is introduced to simplify the description of the connectivity of the Ge10 clusters and to illustrate the disorder. This is also used to compare the structure of SU-75 with those of related Ge10 germanates.

  • Artikel SU-65
    Andrew Kentaro Inge (et al.).
  • 2012. Andrew Kentaro Inge (et al.). Crystal Growth & Design 12 (10), 4853-4860

    A novel open-framework germanate SU-74 containing intersecting 10- and 12-ring channels was prepared by hydrothermal synthesis using 2-methylpentamethylenediamine (MPMD) or 1-(2-aminoethyl)piperazine (AEP) as the organic structure directing agent (SDA). The framework structure of SU-74-MPMD was solved from X-ray powder diffraction (XRPD) data using powder charge-flipping (pCF). The guest species H2MPMD2+, NH4+ cations and water molecules were located in the voids using real-space simulated annealing. SU-74-MPMD contains 51 non-hydrogen atoms in its asymmetric unit and is one of the most complex framework structures solved by XRPD. The structure of SU-74-AEP was solved by single crystal synchrotron X-ray diffraction. SU-74-MPMD and SU-74-AEP have the same framework structure. The location of the NH4+ cations in both structures is similar, while the positions of the SDAs in the pores are different. SU-74 follows the fcu-11-P21/c net. The underlying topology of SU-74 is compared to those of other Ge10 structures containing additional GeO4 tetrahedra. The presence of additional tetrahedra can significantly affect the framework topology through the addition of edges between the Ge10 nodes.

  • 2011. Bing Guo (et al.). Inorganic Chemistry 50 (1), 201-207

    The systematic exploration of the phase diagram of the GeO2-1,6-diaminohexane-water-pyridine-HF system has allowed the identification of specific roles of the HF, H2O contents, and HF/H2O ratio in the formation of Ge7X19 (Ge7), Ge9X25−26 (Ge9), and Ge10X28 (Ge10) clusters (X = O, OH, F). This work has led to the discovery of two novel structures with extra-large 18-membered rings accommodating 1,6-diaminohexane (DAH): SU-63, |1.5H2DAH|[Ge7O14X3]·2H2O, a layered germanate constructed from Ge7 clusters with the Kagom topology, and SU-64, |11H2DAH|[Ge9O18X4][Ge7O14X3]6·16H2O, a germanate built of two-dimensional slabs containing both Ge7 and Ge9 clusters (X = OH or F). We also put SU-64 in context with previously reported cluster germanate compounds with related topologies by means of a simple crystal deconstruction study.

  • 2010. Bao-Lin Lee (et al.). European Journal of Inorganic Chemistry (34), 5462-5470

    In this work, we report the preparation and crystal structures of three new oligonuclear complexes, Ru-2(bbpmp)(mu-OAc)(3) (4), [Co-2(bbpmp)(mu-OAc)(mu-OMe)](PF6) (5), [Cu-4(Hbbpmp)(2)(mu-OAc)(H2O)(2)](OAc)(PF6)(2) (6) {H(3)bbpmp = 2,6-bis[(2-hydroxybenzyl)-(2-pyridylmethyl)aminomethyl]-4-methylphenol (3)}. The structures of the complexes were determined by single-crystal X-ray diffraction. The oxidation states of ruthenium, cobalt and copper in the complexes are +3, +3 and +2, respectively. In 4 and 5, Ru-III and Co-III are coordinated to four oxygen and two nitrogen atoms in an octahedral geometry, while in 6, Cu-II adopts both octahedral (CuN2O4) and square-pyramidal (CuN2O3) geometry. The potential of the three complexes as oxidation catalysts has been investigated.

  • 2009. Charlotte Bonneau (et al.). Inorganic Chemistry 48 (21), 9962-9964

    We present a novel open-framework oxide material constructed from Ge10(O,OH)28 (Ge10) oxide clusters prepared via a nonsurfactant route. The material shows two distinct pore windows of 9.43 and 4.65 Å and a low framework density structure of 12.7 Ge atoms per 1000 Å3. The topological study leads to the recognition of a newly observed trinodal 6,7-heterocoordinated net related to the 7-coordinated swh net. The structure displays large rigid cylinders showing features indicating a growth mechanism by hard-sphere packing of the inorganic moiety similar to that observed in mesoporous materials.

Visa alla publikationer av Andrew Kentaro Inge vid Stockholms universitet

Senast uppdaterad: 2 augusti 2019

Bokmärk och dela Tipsa