David DegermanForskare
Om mig
Jag börade doktorera hösten 2015 i xSoLaS-gruppen som jobbar med vatten, ytkemi och katalys. Har bakgrund inom kemi och genomförde mina masterstudier på institutionen för material- och miljökemi.
Forskning
Jag och mina kollegor bygger nya instrument för att studera katalytiska kemiska reaktioner med röntgenspektroskopi. Vi försöker bland annat att göra teknikerna ultrasnabba och få dem att fungera vid högre tryck och temperaturer. Detta ger oss möjlighet att studera övergångstillståndet medan molekylerna kombineras under mer tillämpbara omständigheter - till skillnad från det friktionslösa vakuum där våra modeller annars gärna tar form.
Våra instrument tar vi till röngentljuskällor runt om i världen och använder röngenljusets elementspecifika spektroskopiska egenskaper. Vårt huvudsakliga mål är att förstå och förbättra processerna för hydrogenering av koldioxid, kolmonoxid och kvävgas.
Forskningsprojekt
Publikationer
I urval från Stockholms universitets publikationsdatabas
-
The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst
2022. Peter Amann (et al.). Science 376 (6593), 603-608
ArtikelThe active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO2/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO2/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO2 gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO2 methanol synthesis.
-
A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars
2019. Peter Amann (et al.). Review of Scientific Instruments 90 (10)
ArtikelWe present a new high-pressure x-ray photoelectron spectroscopy system dedicated to probing catalytic reactions under realistic conditions at pressures of multiple bars. The instrument builds around the novel concept of a virtual cell in which a gas flow onto the sample surface creates a localized high-pressure pillow. This allows the instrument to be operated with a low pressure of a few millibar in the main chamber, while simultaneously a local pressure exceeding 1 bar can be supplied at the sample surface. Synchrotron based hard x-ray excitation is used to increase the electron mean free path in the gas region between sample and analyzer while grazing incidence <5 degrees close to total external refection conditions enhances surface sensitivity. The aperture separating the high-pressure region from the differential pumping of the electron spectrometer consists of multiple, evenly spaced, micrometer sized holes matching the footprint of the x-ray beam on the sample. The resulting signal is highly dependent on the sample-to-aperture distance because photoemitted electrons are subject to strong scattering in the gas phase. Therefore, high precision control of the sample-to-aperture distance is crucial. A fully integrated manipulator allows for sample movement with step sizes of 10 nm between 0 and -5 mm with very low vibrational amplitude and also for sample heating up to 500 degrees C under reaction conditions. We demonstrate the performance of this novel instrument with bulk 2p spectra of a copper single crystal at He pressures of up to 2.5 bars and C1s spectra measured in gas mixtures of CO + H-2 at pressures of up to 790 mbar. The capability to detect emitted photoelectrons at several bars opens the prospect for studies of catalytic reactions under industrially relevant operando conditions.
-
Operando Observation of Oxygenated Intermediates during CO Hydrogenation on Rh Single Crystals
2022. David Degerman (et al.). Journal of the American Chemical Society 144 (16), 7038-7042
ArtikelThe CO hydrogenation reaction over the Rh(111) and (211) surfaces has been investigated operando by X-ray photoelectron spectroscopy at a pressure of 150 mbar. Observations of the resting state of the catalyst give mechanistic insight into the selectivity of Rh for generating ethanol from CO hydrogenation. This study shows that the Rh(111) surface does not dissociate all CO molecules before hydrogenation of the O and C atoms, which allows methoxy and other both oxygenated and hydrogenated species to be visible in the photoelectron spectra.
-
In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer-Tropsch Synthesis
2022. Mikhail Shipilin (et al.). ACS Catalysis 12 (13), 7609-7621
ArtikelCarbide formation on iron-based catalysts is an integral and, arguably, the most important part of the Fischer–Tropsch synthesis process, converting CO and H2 into synthetic fuels and numerous valuable chemicals. Here, we report an in situ surface-sensitive study of the effect of pressure, temperature, time, and gas feed composition on the growth dynamics of two distinct iron–carbon phases with the octahedral and trigonal prismatic coordination of carbon sites on an Fe(110) single crystal acting as a model catalyst. Using a combination of state-of-the-art X-ray photoelectron spectroscopy at an unprecedentedly high pressure, high-energy surface X-ray diffraction, mass spectrometry, and theoretical calculations, we reveal the details of iron surface carburization and product formation under semirealistic conditions. We provide a detailed insight into the state of the catalyst’s surface in relation to the reaction.
Visa alla publikationer av David Degerman vid Stockholms universitet