Stockholms universitet

Erik SchwarzDoktorand

Om mig

I am a doctoral student working in soil biogeochemical modeling. My main interest is to translate concepts from soil microbial ecology into process-based biogeochemical models to improve our understanding of carbon and nutrient cycling under changing environmental conditions. The conceptual questions touch on theories of optimal adaption and emergent system behavior. My work is part of the SMILE project.

Forskningsprojekt

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • Spatial Control of Microbial Pesticide Degradation in Soil: A Model-Based Scenario Analysis

    2022. Erik Schwarz (et al.). Environmental Science and Technology 56 (20), 14427-14438

    Artikel

    Microbial pesticide degraders are heterogeneously distributed in soil. Their spatial aggregation at the millimeter scale reduces the frequency of degrader–pesticide encounter and can introduce transport limitations to pesticide degradation. We simulated reactive pesticide transport in soil to investigate the fate of the widely used herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in response to differently aggregated distributions of degrading microbes. Four scenarios were defined covering millimeter scale heterogeneity from homogeneous (pseudo-1D) to extremely heterogeneous degrader distributions and two precipitation scenarios with either continuous light rain or heavy rain events. Leaching from subsoils did not occur in any scenario. Within the topsoil, increasing spatial heterogeneity of microbial degraders reduced macroscopic degradation rates, increased MCPA leaching, and prolonged the persistence of residual MCPA. In heterogeneous scenarios, pesticide degradation was limited by the spatial separation of degrader and pesticide, which was quantified by the spatial covariance between MCPA and degraders. Heavy rain events temporarily lifted these transport constraints in heterogeneous scenarios and increased degradation rates. Our results indicate that the mild millimeter scale spatial heterogeneity of degraders typical for arable topsoil will have negligible consequences for the fate of MCPA, but strong clustering of degraders can delay pesticide degradation. 

    Läs mer om Spatial Control of Microbial Pesticide Degradation in Soil

Visa alla publikationer av Erik Schwarz vid Stockholms universitet