Gunnar SvenssonProfessor
Om mig
Jag tycker att det är väldigt spännande att arbeta i en miljö där forskare, unga som gamla utmanar vetenskapens gränser för att utveckla nya material och processer som kan hjälpa oss att skapa ett hållbart samhälle. Det är också mycket motiverande att överföra min faschination av kemins värld till våra unga studenter. Jag ser mig själv som en oorganisk fastfaskemist som syntetiserar föreningar och studerar deras kristallstrukturer och grundläggande egenskaper. Mycket ofta är föreningarna av intresse för olika energirelaterade tillämpningar.
Undervisning
Läs mer om min undervisning på den engelska profilsidan.
Forskning
Eftersom den forskning jag är involverad i är av internationell karaktär presenterar jag den på min engelska profilsida.
Publikationer
I urval från Stockholms universitets publikationsdatabas
-
Macroscopic rods from assembled colloidal particles of hydrothermally carbonized glucose and their use as templates for silicon carbide and tricopper silicide
2021. Xia Wang (et al.). Journal of Colloid and Interface Science 602, 480-489
ArtikelSelf-aggregated colloids can be used for the preparation of materials, and we studied long rod-like aggregates formed on the evaporation of water from dispersed particles of colloidal hydrochar. The monodispersed hydrochar particles (100–200 nm) were synthesized by the hydrothermal carbonization ofglucose and purified through dialysis. During the synthesis they formed colloidal dispersions which wereelectrostatically stable at intermediate to high pH and at low ion strengths. On the evaporation of water,macroscopically large rods formed from the dispersions at intermediate pH conditions. The rods formedat the solid-water interface orthogonally oriented with respect to the drying direction. Pyrolysis renderedthe rods highly porous without qualitatively affecting their shape. A Cu-Si alloy was reactively infiltratedinto the in-situ pyrolyzed hydrochars and composites of tricopper silicide (Cu3Si)-silicon carbide(SiC)/carbon formed. During this process, the Si atoms reacted with the C atoms, which in turned causedthe alloy to wet and further react with the carbon. The shape of the underlying carbon template wasmaintained during the reactions, and the formed composite preparation was subsequently calcined intoa Cu3Si-SiC-based replica of the rod-like assemblies of carbon-based colloidal particles. Transmission andscanning electron microscopy, and X-ray diffraction were used to study the shape, composition, andstructure of the formed solids. Further studies of materials prepared with reactive infiltration of alloysinto self-aggregated and carbon-based solids can be justified from a perspective of colloidal science, aswell as the explorative use of hydrochar prepared from real biomass, exploration of the compositionalspace in relation to the reactive infiltration, and applications of the materials in catalysis.
-
Manganese Hexacyanomanganate as a Positive Electrode for Nonaqueous Li-, Na-, and K-Ion Batteries
2019. Viktor Renman (et al.). The Journal of Physical Chemistry C 123 (36), 22040-22049
ArtikelK2Mn[Mn(CN)(6)] is synthesized, characterized, and evaluated as possible positive electrode material in nonaqueous Li-, Na-, and K-ion batteries. This compound belongs to the rich and versatile family of hexacyanometallates displaying distinctive structural properties, which makes it interesting for ion insertion purposes. It can be viewed as a perovskite-like compound in which CN-bridged Mn(CN)(6) octahedra form an open framework structure with sufficiently large diffusion channels able to accommodate a variety of insertion cations. By means of galvanostatic cycling and cyclic voltammetry tests in nonaqueous alkali metal half-cells, it is demonstrated that this material is able to reversibly host Li+, Na+, and K+ ions via electrochemical insertion/deinsertion within a wide voltage range. The general electrochemical features are similar for all of these three ion insertion chemistries. An in operando X-ray diffraction investigation indicates that the original monoclinic structure is transformed into a cubic one during charging (i.e., removal of cations from the host framework) and that such a process is reversible upon subsequent cell discharge and cation reuptake.
-
Silicoaluminophosphate (SAPO)-Templated Activated Carbons
2019. Yunxiang Li (et al.).
ArtikelMicroporous activated carbon was prepared by depositing and pyrolyzing propylene within the microporous voids of SAPO-37 and subsequently removing the template by a treatment with HCl and NaOH. The carbon had a high surface area and large micropore and ultramicropore volumes. The yield, crystallinity, morphology, and adsorption properties compared well with those of a structurally related zeolite-Y-templated carbon. No HF was needed to remove the SAPO-37 template in contrast to the zeolite Y template, which could be of industrial importance.
-
A structural study of Ruddlesden-Popper phases Sr3-xYx(Fe1.25Ni0.75)O7-delta with x <= 0.75 by neutron powder diffraction and EXAFS/XANES spectroscopy
2018. Jekabs Grins (et al.). Journal of Materials Chemistry A 6 (13), 5313-5323
ArtikelThe structures of Ruddlesden-Popper n = 2 member phases Sr3-xYxFe1.25Ni0.75O7-delta with 0 <= x <= 0.75 have been investigated using neutron powder diffraction and K-edge Fe and Ni EXAFS/XANES spectroscopy in order to gain information about the evolution of the oxygen vacancy distribution and Fe/Ni oxidation state with x. Both samples prepared at 1300 degrees C under a flow of N-2(g), with delta = 1.41-1.00, and samples subsequently annealed in air at 900 degrees C, with delta = 0.44-0.59, were characterized. The as-prepared x = 0.75 phase has delta = 1, the O1 atom site is vacant, and the Fe3+/Ni2+ ions have a square pyramidal coordination. With decreasing x the O3 occupancy decreases nearly linearly to 81% for x = 0, while the O1 occupancy increases from 0 for x = 0.4 to 33% for x = 0. The air-annealed x = 0.75 sample has a delta value of 0.59 and the Fe3+/Fe4+/Ni2+/Ni3+ ions have both square pyramidal and octahedral coordination. With decreasing x, the delta value decreases to 0.45 for x = 0, implying an increase in the oxidation states of Fe/Ni ions. EXAFS/XANES data show that for the as-prepared samples the coordination changes are predominantly for Ni2+ ions and that the air-annealed samples contain both Fe3+/Fe4+ and Ni2+/Ni3+ ions.
-
Crystal Structure and Coordination of B-Cations in the Ruddlesden-Popper Phases Sr3-xPrx(Fe1.25Ni0.75)O7- (0 x 0.4)
2018. Gunnar Svensson (et al.).
ArtikelCompounds Sr3-xPrxFe1.25Ni0.75O7- with 0 x 0.4 and Ruddlesden-Popper n = 2 type structures were synthesized and investigated by X-ray and neutron powder diffraction, thermogravimetry, and Mossbauer spectroscopy. Both samples, prepared at 1300 degrees C under N-2(g) flow and samples subsequently air-annealed at 900 degrees C, were studied. The structures contained oxygen vacancies in the perovskite layers, and the Fe/Ni cations had an average coordination number less than six. The oxygen content was considerably higher for air-annealed samples than for samples prepared under N-2, 7 - = similar to 6.6 and similar to 5.6 per formula unit, respectively. Mossbauer data collected at 7 K, below magnetic ordering temperatures, were consistent with X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) results. The electrical conductivity was considerably higher for the air-annealed samples and was for x = 0.1 similar to 30 Scm(-1) at 500 degrees C. The thermal expansion coefficients were measured in air between room temperature and 900 degrees C and was found to be 20-24 ppmK(-1) overall.
Visa alla publikationer av Gunnar Svensson vid Stockholms universitet