Pablo Giménez-GómezPost Doc
Om mig
Jag tog min femåriga kemiingenjörsexamen 2009 vid universitetet i Murcia (Spanien), en magisterexamen i arbetshälsa och säkerhet (specialiserad i säkerhet, hälsa och ergonomi) 2010 vid Burea Veritas (Spanien), en masterexamen i Elektrokemi 2011 vid Polytechnic University of Cartagena (Spanien) och doktorsexamen i elektrokemi 2017 vid Autonomous University of Barcelona (Spanien).
Jag har en bred erfarenhet av forskningsinstitutioner längs Spanien (Polytechnic University of Cartagena, Autonomous University of Barcelona, Microelectronics Institute of Barcelona -IMB-CNM, CSIC-) och Europa (Institut für Fertigungstechnologie keramischer Bauteile, IFKB, Stuttgart, KTH Royal Institute of Technology, Stockholms universitet, Stockholm), inklusive sju år som postdoc (under denna period har jag fått 5 konkurrenskraftiga postdoktorala projekt från Europa, Sverige och Spanien).
Under dessa år har jag fått en stark bakgrund inom optisk och elektrokemisk transduktion, mikro-/nanoteknik, biosensing och mikrofluidik inom ramen för 10 nationella (2 som PI) och 2 europeiska (som PI) FoU-projekt och 7 FoU- och innovationskontrakt med företag i Spanien, USA eller Tyskland, med en total budget på €1.1M euro för min egen forskning.
Mina huvudsakliga forskningskompetenser inkluderar:
- Design och tillverkning av mikrotillverkade elektrokemiska givare
- Biofunktionalisering med polymerer, hydrogeler, silkesfibroin eller nanomaterial
- (Elektro)kemisk och optisk (bio)avkänning
- Simulering, design och tillverkning av mikrofluidik
- Integrationsteknologier som kombinerar sensorer och mikrofluidik för vätskehantering
- Tillämpning av de mikroanalytiska systemen för detektering av nyckelanlyter i t.ex. livsmedels-/drycksindustrin, miljökontroll eller klinisk diagnostik
- Skrivning, tillämpning och ledning av FoU och innovationsprojekt
- Tekniköverföring
Undervisning
- Lärarassistent för analytisk kemi grundkurs VT24
Forskning
- Postdoktor Marie Skłodowska-Curie Actions-projektet "DVD-läsbar opto-elektrokemisk Lab-on-a-Disc som bärbar trådlös medicinsk enhet med liten faktor för fetmahantering". En ny kostnadseffektiv och bärbar multiplexerad medicinsk enhet, med unika och aldrig tidigare skådade egenskaper, för exakt hantering av kroniska sjukdomar.
- Projektet "In situ miljöövervakning med en pappersrulle". Målet med projektet är att utveckla ett "papperstryckt laboratorium", genom att integrera optisk och elektrokemisk avkänning på en pappersmikrofluidikplattform. Det kommer att göra det möjligt att samla in kemiska och biologiska data till låg kostnad och att upptäcka föroreningar och viktiga miljöparametrar vid högre frekvenser och högre rumslig täthet, vilket resulterar i en robust och kostnadseffektiv teknik för en bättre förvaltning av vattenmiljön.
Forskningsprojekt
Publikationer
Jag är författare till 33 publikationer, inklusive 24 artiklar i internationella tidskrifter med hög inverkan peer-review och 8 konferensbidrag (22 Q1; 19 första författare; 9 motsvarande författare); 1 licensierat patent; och 39 konferensbidrag (25 muntliga, 1 inbjuden).
I urval från Stockholms universitets publikationsdatabas
-
Fiber-Optic-Based System for High-Resolution Monitoring of Stretch in Excised Tissues
2023. Antonio Velarte (et al.). Biosensors 13 (10)
ArtikelCardiovascular diseases cause a high number of deaths nowadays. To improve these statistics, new strategies to better understand the electrical and mechanical abnormalities underlying them are urgently required. This study focuses on the development of a sensor to measure tissue stretch in excised tissues, enabling improved knowledge of biomechanical properties and allowing greater control in real time. A system made of biocompatible materials is described, which is based on two cantilevered platforms that integrate an optical fiber inside them to quantify the amount of stretch the tissues are exposed to with a precision of mu m. The operating principle of the sensor is based on the variation of the optical path with the movement of the platforms onto which the samples are fixed. The conducted tests highlight that this system, based on a simple topology and technology, is capable of achieving the desired purpose (a resolution of similar to 1 mu m), enabling the tissue to be bathed in any medium within the system.
-
A novel integrated platform enabling simultaneous microextraction and chemical analysis on-chip
2023. Elia Santigosa-Murillo (et al.). Microchemical journal (Print) 193, 109044-109044
ArtikelThe nature and size of biological, pharmaceutical or environmental analytes complicates their extraction and detection outside of laboratories and near the site of interest by the current chromatographic methods because they require the combination of bulky extraction and detection methods. In order to solve this inefficient centralized control, a ground-breaking and miniaturized proof of concept platform is developed in this work. The platform integrates for the very first time an electro-membrane extraction process and an accurate analyte quantification method in the same device, by using electrochemical impedance spectroscopy (EIS) as analytical technique. The microfluidic flow cell, including the microfluidic components, is fabricated in polymeric materials by rapid prototyping techniques. It comprises a four-electrode platinum thin-film chip that enables the control of the microextraction and the full characterization of the process, i.e., extraction efficiency determination, at the same time. The microfluidic system has been simulated by using computational tools, enabling an accurate prediction of the effect of the different experimental conditions in the microextraction efficiency. The platform has been validated in the microextraction of the nonsteroidal anti-inflammatory drug ketoprofen in a range from 0.5 ppm to 6 ppm. The predicted microextraction efficiency values obtained by EIS were compared with those calculated from the high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD), showing an excellent agreement. This validates the high potential of this integrated and miniaturized platform for the simultaneous extraction by electro-membrane and also the analysis within the platform, solving one of the of most important limitations of current systems.
-
Distance-based paper analytical device for the determination of dissolved inorganic carbon concentration in freshwater
2023. Pablo Giménez-Gómez (et al.). Sensors and actuators. B, Chemical 385, 133694-133694
ArtikelDissolved inorganic carbon (DIC) levels in freshwaters play a key role in the equilibrium of the carbon cycle between the atmosphere, water and living beings. Standard classical methods for DIC determination generally involve bulky and expensive equipment used in centralized laboratories, resulting in time-consuming processes that do not allow for adequate monitoring in the field. In order to address this challenge, we have developed a distance-based paper analytical device (PAD) for on-site determination of DIC in water. The portable, cost-effective and easy-to-use device was based on the miniaturization and integration of a classical acid-base colorimetric titration on a paper channel, enabling an accurate determination of DIC in less than 20 min. The length of the blue colored line in the detection channel after being filled with the sample was related to the DIC concentration in the sample. The reagent solution used to modify the titration channel was optimized so that DIC concentrations in the range 50–1000 mg L−1 could be measured. The long-term stability of the paper-based device was also evaluated, demonstrating a working stability for more than 70 days after their fabrication, an important characteristic for in-the-field analysis. Finally, the PAD was validated with different water samples, i.e. tap water, commercial bottled drinking water and water samples from a mine, with excellent agreement between the results obtained from the PAD and the standard method. This demonstrates the high potential of the proposed paper analytical device to quantify DIC in situ by minimally-trained personnel without the need for peripheral equipment, which represents an important advance compared to the current limited analysis systems.
-
A paper-based analytical device for the on-site multiplexed monitoring of soil nutrients extracted with a cafetière
2025. Pablo Giménez-Gómez (et al.). Sensors and actuators. B, Chemical 424, 136881-136881
ArtikelSustainable agricultural production has the aim to maximise the yield and quality of harvests. For that, farmers need to monitor nutrient levels within soils to apply fertilizers accordingly and to prevent land degradation and soil exhaustion. Current methods involve time-consuming sampling and transport to a laboratory; and most farmers do not have the resources to measure frequently at multiple locations, limiting their sustainable production. In order to address this challenge, a paper-based analytical device (PAD) for the multiplexed detection of soil nutrients, i.e. phosphate, nitrate and pH, extracted with a cafetière-based method, is developed in this work. The compact and easy-to-use platform enables an accurate soil analysis in less than 20 min; 3 min for extraction and 15 min for readout. Two detection channels for nitrate and phosphate analysis, and one circular detection area for pH, including the selective reagents to each analyte, are defined within the PAD. Upon contact with the specific nutrients, the platform produces a colorimetric response that is easily readable by naked eye and smartphone camera. The detection reactions were optimized in the range 1 − 22.5 mg L−1, 10 −100 mg L−1 and 5.0 – 8.5 for phosphate, nitrate and pH, respectively, in agreement with the relevant levels in soils. The volume of water, the number of pushes of the plunger, the extraction time and the mass of soil were also optimized for the nutrient extraction method with the cafetière. The optimal workflow was validated with commercial soils and compared with the conventional UV-Vis method and the labels from the soil package, showing excellent agreement. This paper-based platform provides the possibility of a cheap, sensitive and specific monitoring of soil nutrients by minimally trained operators, such as farmers, enabling in-the-field analyses of multiple key soil nutrients in resource-limited settings and therefore addressing the challenge of routine monitoring for sustainable agriculture.
Visa alla publikationer av Pablo Giménez-Gómez vid Stockholms universitet