Stockholms universitet

Anna SobekProfessor

Om mig

Professor i miljökemi, Institutionen för Miljövetenskap

Prefekt

Jag studerade biologi och kemi vid Uppsala Universitet och kom till Stockholms Universitet och Institutet för Tillämpad Miljöforskning (ITM) år 2000 för att starta mitt doktorandprojekt om upptag av PCBer i basen av den akvatiska näringsväven. Därefter fick jag ett EU-Marie Curie- anslag för att göra en postdoc på sorption av herbicider till black carbon, vid Swiss Centre of Excellence for Agricultural Research, Zürich, Schweiz (2006-2009).

Efter min postdoc ville jag få mer konkret användning för mina kunskaper om miljöproblem och bestämde mig därför att lämna akademin. Under några år arbetade jag som miljöhandläggare vid Länsstyrelsen i Gävleborg. Trots ett meningsfullt arbete saknade jag forskningsmiljön och när möjligheten kom att söka en fyraårig forskartjänst sökte jag, och 2011 kom jag tillbaka till Stockholms Universitet. Sedan 2018 har jag en fast tjänst vid Institutionen för Miljövetenskap. År 2020 befordrades jag till professor.   

Undervisning

Jag undervisar på följande kurser

  • Miljö och Hälsa (MI007), som är introduktionskursen till vårat masterprogram i Miljö och Hälsoskydd. Jag är kursansvarig för denna kurs.
  • Large Scale Challenges to Climate and Environment (MI7014), där jag är ansvarig för veckan om Water Quality.
  • Risk assessment and regulation of Chemicals (MI8022).
  • Environmental Field Studies (MI8021).
  • Östersjöns ekosystem som ges av Östersjöcentrum och DEEP.

Jag handleder masterstudenter på projekt som handlar om organiska miljögifter.  

Forskningsprojekt

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • A strategic screening approach to identify transformation products of organic micropollutants along rivers

    Zhe Li (et al.).

    Many transformation products (TPs) from organic micropollutants are not included in routine monitoring programs due to limited knowledge of their occurrence and fate. An efficient method to identify and prioritize critical compounds in terms of environmental relevance is needed. In this study we applied a strategic screening approach based on a case-control concept to identify TPs with an increasing trend along a stretch in four wastewater-impacted rivers. Time-integrated samples were taken over one week at both ends of a river stretch downstream of a wastewater treatment plant (WWTP) outfall. The screening procedure consisted of three major steps: i) screening for parent compounds (PCs) attenuating along the stretch; ii) prediction of TPs for these PCs; and iii) screening for TPs with an increasing trend along the stretch. In total, 48 organic micropollutants were tentatively identified, of which 32 were decreasing along the stretches. From these PCs, 1315 TPs were predicted and eight out of which were tentatively identified with increasing concentrations along the stretches. Generally, good correlations were observed between the suspect screening results from this study and previous target analysis results on the same samples, suggesting high confidence of our screening approach. The case-control concept was proven efficient and reliable for identifying environmental relevant TPs formed along rivers. 

    Läs mer om A strategic screening approach to identify transformation products of organic micropollutants along rivers
  • Organic matter degradation causes enrichment of organic pollutants in hadal sediments

    2023. Anna Sobek (et al.). Nature Communications 14 (1)

    Artikel

    Burial of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) in deep-sea sediments contributes to 60% of their historical emissions. Yet, empirical data on their occurrence in the deep-ocean is scarce. Estimates of the deep-ocean POP sink are therefore uncertain. Hadal trenches, representing the deepest part of the ocean, are hotspots for organic carbon burial and decomposition. POPs favorably partition to organic carbon, making trenches likely significant sinks for contaminants. Here we show that PCBs occur in both hadal (7720–8085 m) and non-hadal (2560–4050 m) sediment in the Atacama Trench. PCB concentrations normalized to sediment dry weight were similar across sites while those normalized to sediment organic carbon increased exponentially as the inert organic carbon fraction of the sediment increased in degraded hadal sediments. We suggest that the unique deposition dynamics and elevated turnover of organic carbon in hadal trenches increase POP concentrations in the deepest places on Earth.

    Läs mer om Organic matter degradation causes enrichment of organic pollutants in hadal sediments
  • Scenario-based modelling of changes in chemical intake fraction in Sweden and the Baltic Sea under global change

    2023. Sabrina K. Roth (et al.). Science of the Total Environment 888

    Artikel

    The climate in Europe is warming twice as fast as it is across the rest of the globe, and in Sweden annual mean tempera-tures are forecast to increase by up to 3-6 & DEG;C by 2100, with increasing frequency and magnitude of floods, heatwaves, and other extreme weather. These climate change-related environmental factors and the response of humans at the individual and collective level will affect the mobilization and transport of and human exposure to chemical pollutants in the envi-ronment. We conducted a literature review of possible future impacts of global change in response to a changing climate on chemical pollutants in the environment and human exposure, with a focus on drivers of change in exposure of the Swedish population to chemicals in the indoor and outdoor environment. Based on the literature review, we formulated three alternative exposure scenarios that are inspired by three of the shared socioeconomic pathways (SSPs). We then con-ducted scenario-based exposure modelling of the >3000 organic chemicals in the USEtox (R) 2.0 chemical library, and fur-ther selected three chemicals (terbuthylazine, benzo[a]pyrene, PCB-155) from the USEtox library that are archetypical pollutants of drinking water and food as illustrative examples. We focus our modelling on changes in the population intake fraction of chemicals, which is calculated as the fraction of a chemical emitted to the environment that is ingested via food uptake or inhaled by the Swedish population. Our results demonstrate that changes of intake fractions of chemicals are possible by up to twofold increases or decreases under different development scenarios. Changes in intake fraction in the most optimistic SSP1 scenario are mostly attributable to a shift by the population towards a more plant-based diet, while changes in the pessimistic SSP5 scenario are driven by environmental changes such as rain fall and runoff rates.

    Läs mer om Scenario-based modelling of changes in chemical intake fraction in Sweden and the Baltic Sea under global change
  • Biogeochemical functioning of the Baltic Sea

    2022. Karol Kuliński (et al.). Earth System Dynamics 13 (1), 633-685

    Artikel

    Location, specific topography, and hydrographic setting together with climate change and strong anthropogenic pressure are the main factors shaping the biogeochemical functioning and thus also the ecological status of the Baltic Sea. The recent decades have brought significant changes in the Baltic Sea. First, the rising nutrient loads from land in the second half of the 20th century led to eutrophication and spreading of hypoxic and anoxic areas, for which permanent stratification of the water column and limited ventilation of deep-water layers made favourable conditions. Since the 1980s the nutrient loads to the Baltic Sea have been continuously decreasing. This, however, has so far not resulted in significant improvements in oxygen availability in the deep regions, which has revealed a slow response time of the system to the reduction of the land-derived nutrient loads. Responsible for that is the low burial efficiency of phosphorus at anoxic conditions and its remobilization from sediments when conditions change from oxic to anoxic. This results in a stoichiometric excess of phosphorus available for organic-matter production, which promotes the growth of N2-fixing cyanobacteria and in turn supports eutrophication.

    This assessment reviews the available and published knowledge on the biogeochemical functioning of the Baltic Sea. In its content, the paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, and P) external loads, their transformations in the coastal zone, changes in organic-matter production (eutrophication) and remineralization (oxygen availability), and the role of sediments in burial and turnover of C, N, and P. In addition to that, this paper focuses also on changes in the marine CO2 system, the structure and functioning of the microbial community, and the role of contaminants for biogeochemical processes. This comprehensive assessment allowed also for identifying knowledge gaps and future research needs in the field of marine biogeochemistry in the Baltic Sea.

    Läs mer om Biogeochemical functioning of the Baltic Sea
  • Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an integrated assessment of extreme events in multiple stressors research

    2022. Francesco Polazzo (et al.). Global Change Biology 28 (4), 1248-1267

    Artikel

    Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.

    Läs mer om Combined effects of heatwaves and micropollutants on freshwater ecosystems
  • Multiple stressor effects of a heatwave and a herbicide on zooplankton communities: Implications of global climate change

    2022. Sabrina K. Roth (et al.). Frontiers in Environmental Science 10

    Artikel

    Aquatic ecosystems are exposed to pesticides through various pathways such as spray-drift, agricultural runoff, and chemical spills. Understanding the impact of pesticides on freshwater ecosystems requires not only understanding how pesticides affect aquatic organisms but also knowledge of their interactions with other stressors, such as those related to global climate change. Heatwaves are extended periods of temperature increase relative to the climatological mean. They are increasing in frequency and magnitude and pose an emerging threat to shallow freshwater ecosystems. In this study, we evaluated the single and combined effects of the herbicide terbuthylazine and a simulated heatwave on freshwater zooplankton communities using indoor microcosms. Terbuthylazine was applied at an environmentally relevant concentration (15 µg/L). The heatwave consisted of an increase of 6°C above the control temperature for a period of 7 days. When applied individually, the heatwave increased the total abundance of zooplankton by 3 times. The terbuthylazine exposure led to an indirect effect on the zooplankton community structure, reducing the relative abundance of some taxa. The combination of the heatwave and terbuthylazine had no significant impact on the zooplankton community, indicating additive effects dominated by the herbicide. The interaction between the two stressors increased chlorophyll-a concentrations and apparently changed the structure of the phytoplankton community, which may have benefitted cyanobacteria over green algae. Overall, this study shows that understanding the effects of chemical and non-chemical stressors on aquatic communities remains a challenging task. Further studies should be conducted to improve our mechanistic understanding of multiple stressor interactions at different levels of biological organisation.

    Läs mer om Multiple stressor effects of a heatwave and a herbicide on zooplankton communities
  • Pharmaceutical pollution of the world's rivers

    2022. John L. Wilkinson (et al.). Proceedings of the National Academy of Sciences of the United States of America 119 (8)

    Artikel

    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.

    Läs mer om Pharmaceutical pollution of the world's rivers
  • Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants

    2022. Robert Rämö (et al.). Environmental Toxicology and Chemistry 41 (4), 1096-1110

    Artikel

    Thin-layer capping using activated carbon (AC) has been described as a cost-effective in situ sediment remediation method for organic contaminants. In this study, we compare the capping efficiency of powdered AC (PAC) against granular AC (GAC) using contaminated sediment from Oskarshamn harbor, Sweden. The effects of resuspension on contaminant retention and cap integrity were also studied. Intact sediment cores were collected from the outer harbor and brought to the laboratory. Three thin-layer caps, consisting of PAC or GAC mixed with clay, or clay only, were added to the sediment surface. Resuspension was created using a motor-driven paddle to simulate propeller wash from ship traffic. Passive samplers were placed in the sediment and in the water column to measure the sediment-to-water release of PAHs, PCBs, and metals. Our results show that a thin-layer cap with PAC reduced sediment-to-water fluxes of PCBs by 57 % under static conditions and 91 % under resuspension. Thin-layer capping with GAC was less effective than PAC, but reduced fluxes of high-molecular weight PAHs. Thin-layer capping with AC was less effective in retaining metals, except for Cd, which release was significantly reduced by PAC. Resuspension generally decreased water concentrations of dissolved cationic metals, perhaps due to sorption to suspended sediment particles. Sediment resuspension in treatments without capping increased fluxes of PCBs with log Kow > 7 and PAHs with log Kow 5 6, but resuspension reduced PCB and PAH fluxes through the PAC thin-layer cap. Overall, PAC performed better than GAC, but adverse effects on the benthic community and transport of PAC to non-target areas are drawbacks that favor the use of GAC.

    Läs mer om Sediment Remediation Using Activated Carbon
  • The potential of the EU Water Framework Directive for reducing emissions of pollutants is limited: a case study on river basin specific pollutants in Swedish environmental permitting processes

    2022. Emma Undeman (et al.). Environmental Sciences Europe 34 (1)

    Artikel

    River basin specific pollutants (RBSPs) are supposedly a key tool to fulfil the EU’s Water Framework Directive (WFD) goal of good ecological status in all European waterbodies. The RBSPs provide a tool to manage chemical pollution identified as a national priority. An important question is if the costly management related to RBSPs leads to reduced emissions, an issue we investigated here using Sweden as a case. Swedish measures implemented under the WFD mainly rely on environmental permitting and supervision. We, therefore, specifically assessed how RBSPs have influenced permit proceedings in the Land and Environment Court of Appeal, where precedents for judgements in lower courts and authorities is established, during the 2010s. Despite permit-review being an important measure highlighted in the WFD and in Swedish programs of measures, all cases appealed to higher court were initiated by the operators/permit holders. The permissibility of environmentally hazardous activities was not impacted by RBSPs in any instance. Permit conditions addressing RBSPs were discussed in ⁓1% of all environmental cases, mainly resulting in conditions demanding further inquiries regarding emissions and concentrations of a limited number of RBSPs (i.e., metals and nitrogen in the forms of nitrate and ammonia). Open-ended conditions and delegation allowing for updating permit conditions if additional RBSPs are identified were suggested but rejected by court as these conflict with fundamental principles of precision and predictability of permit conditions stated in Swedish and European law. We conclude that RBSPs as management tool has little impact on emissions from activities requiring environmental permits and thereby water quality.

    Läs mer om The potential of the EU Water Framework Directive for reducing emissions of pollutants is limited
  • Effects of Organic Carbon Origin on Hydrophobic Organic Contaminant Fate in the Baltic Sea

    2021. Inna Nybom (et al.). Environmental Science and Technology 55 (19), 13061-13071

    Artikel

    The transport and fate of hydrophobic organic contaminants (HOCs) in the marine environment are closely linked to organic carbon (OC) cycling processes. We investigated the influence of marine versus terrestrial OC origin on HOC fluxes at two Baltic Sea coastal sites with different relative contributions of terrestrial and marine OC. Stronger sorption of the more than four-ring polycyclic aromatic hydrocarbons and penta-heptachlorinated polychlorinated biphenyls (PCBs) was observed at the marine OC-dominated site. The site-specific partition coefficients between sediment OC and water were 0.2–1.0 log units higher at the marine OC site, with the freely dissolved concentrations in the sediment pore-water 2–10 times lower, when compared with the terrestrial OC site. The stronger sorption at the site characterized with marine OC was most evident for the most hydrophobic PCBs, leading to reduced fluxes of these compounds from sediment to water. According to these results, future changes in OC cycling because of climate change, leading to increased input of terrestrial OC to the marine system, can have consequences for the availability and mobility of HOCs in aquatic systems and thereby also for the capacity of sediments to store HOCs. 

    Läs mer om Effects of Organic Carbon Origin on Hydrophobic Organic Contaminant Fate in the Baltic Sea
  • Inconsistencies in How Environmental Risk Is Evaluated in Sweden for Dumping Dredged Sediment at Sea

    2021. Peter Bruce (et al.). Frontiers in Marine Science 8

    Artikel

    Millions of tons of dredged sediment are dumped at sea annually. International conventions limit dumping when there is a risk of adverse ecological effects, for example if the sediment is contaminated. However, the perception of risk differs substantially among stakeholders and in Sweden there is a lack of guidelines for how to address such risk. In the current study, we examined exemptions to the Swedish ban on dumping at sea, to explore the extent of dumping and how ecological aspects were considered in the evaluation of risks. We analyzed data from all cases granted exemption by county administrative boards and all court cases considering exemption to the ban from the beginning of 2015 to June 2020. We found that while dumping is the least common alternative management method for dredged sediment in total number of cases (98/792), dumping is the main method in terms of volume (30.8/38.2 million m3). When considering exemptions, the courts mainly evaluated the risk of exposure to contaminants and resuspended sediment for the environment adjacent to the dumpsite. The risks from contaminants were characterized based on various lines of reasoning, mainly relying on reference values not based on a scientific correlation to environmental risk. We argue that the evaluations were not in line with current regulations and international conventions as they insufficiently accounted for the ecotoxicological risk of the dumped sediment. These issues are potentially similar in other Baltic Sea countries, where there is a similar dependency on binary chemical limit values.

    Läs mer om Inconsistencies in How Environmental Risk Is Evaluated in Sweden for Dumping Dredged Sediment at Sea
  • Insights into the factors influencing mercury concentrations in tropical reservoir sediments

    2021. Carluvy Baptista-Salazar (et al.). Environmental Science 23 (10), 1542-1553

    Artikel

    Thousands of dams are currently under construction or planned worldwide to meet the growing need for electricity. The creation of reservoirs could, however, lead to conditions that promote the accumulation of mercury (Hg) in surface sediments and the subsequent production of methylmercury (MeHg). Once produced, MeHg can bioaccumulate to harmful levels in organisms. It is unclear to what extent variations in physical features and biogeochemical factors of the reservoir impact Hg accumulation. The objective of this study was to identify key drivers of the accumulation of total Hg (THg) in tropical reservoir sediments. The concentration of THg in all analyzed depth intervals of 22 sediment cores from the five contrasting reservoirs investigated ranged from 16 to 310 ng g(-1) (n = 212, in the different sediment cores, the maximum depth varied from 18 to 96 cm). Our study suggests reservoir size to be an important parameter determining the concentration of THg accumulating in tropical reservoir sediments, with THg ranging up to 50 ng g(-1) in reservoirs with an area exceeding 400 km(2) and from 100 to 200 ng g(-1) in reservoirs with an area less than 80 km(2). In addition to the reservoir size, the role of land use, nutrient loading, biome and sediment properties (e.g., organic carbon content) was tested as potential drivers of THg levels. The principal component analysis conducted suggested THg to be related to the properties of the watershed (high degree of forest cover and low degree of agricultural land use), size and age of the reservoir, water residence time and the levels of nutrients in the reservoir. A direct correlation between THg and tested variables was, however, only observed with the area of the reservoir.

    Läs mer om Insights into the factors influencing mercury concentrations in tropical reservoir sediments
  • Micropollutants in four Brazilian water reservoirs

    2021. Gabrielle Rabelo Quadra (et al.). Limnologica 90

    Artikel

    The concern about emerging contaminants such as pharmaceuticals is growing, mainly due to the increased global consumption of synthetic chemicals and the potential risk to environmental and human health. Although developing countries may be hotspots of pharmaceutical pollution, the knowledge about the occurrence of pharmaceuticals is still limited and patchy. Brazil holds one of the largest freshwater volumes globally, yet, little is known about the occurrence of pharmaceuticals in reservoirs although they make up key water sources. The aim of this study was, therefore, to investigate micropollutant occurrence, mainly pharmaceuticals, in four freshwater reservoirs distributed in Brazil. Water samples were collected in the Curuá-Una (CUN, Amazon region), Chapéu D’Uvas (CDU, Atlantic Forest region), Funil (FUN, Atlantic Forest region), and Simplício (SIM, Atlantic Forest region) reservoirs. The occurrence of 28 different micropollutants, including 26 pharmaceuticals, was investigated with target analysis on a UHPLC-Orbitrap-MS/MS, and a non-target screening approach was performed on all water samples to identify the presence of additional contaminants. The highest micropollutant concentrations were observed in FUN and SIM, which are the reservoirs with the largest population size in the catchment. Only caffeine was detected in CDU and CUN, which are reservoirs less influenced by urbanization. Metformin was the pharmaceutical with the highest concentrations, reaching 2 191 ng L−1 in FUN. The non-target screening identified 125 chemicals, of which most were pharmaceuticals. The numbers of compounds identified and which were above the LOQ were higher in FUN and SIM, in agreement with results from the target analysis. Metformin is the compound with the highest risk to affect FUN reservoir negatively, based on calculated risk quotients. Considering that the reservoirs are used for multiple purposes, including water supply, irrigation, and aquaculture, it is important to continue investigating micropollutant occurrence to guarantee environmental and human health.

    Läs mer om Micropollutants in four Brazilian water reservoirs
  • Risk assessments of contaminated sediments from the perspective of weight of evidence strategies – a Swedish case study

    2021. Peter Bruce (et al.). Human and Ecological Risk Assessment 27 (5), 1366-1387

    Artikel

    Several countries currently lack common recommendations specific to Ecological Risk Assessment (ERA) of contaminated sediments and stakeholders report inconsistencies between currently used approaches. The objective of this study was to provide an increased understanding of how ERAs of contaminated sediments are conducted in comparison to established guidelines. For this, we use Sweden as a case study and compare seven ERAs with four internationally established strategies. Our results indicate that contaminant concentrations receive a comparatively high weight, despite a lack of appropriate benchmarks; toxicity measurements are uncommon, while routine in established strategies; and the integration and interpretation of results lack transparency. We identify three areas that may help improve the practice of ERAs: a common approach to benchmarks, recommendations for how to assess toxic effects, and a common approach for integrating and interpreting results.

    Läs mer om Risk assessments of contaminated sediments from the perspective of weight of evidence strategies – a Swedish case study
  • Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River

    2021. Gabrielle Rabelo Quadra (et al.). Archives of Environmental Contamination and Toxicology 81 (1), 142-154

    Artikel

    In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.5 years at four different sites downstream the city of Juiz de Fora. A total of 28 compounds were analyzed on an UHPLC-Orbitrap-MS/MS using a direct injection method. Nine substances were found in at least one water sample, with concentrations ranging from 11 to 4471 ng L-1. The micropollutants found in the river were not detected at the reference site upstream of the city, except for caffeine, which was present at low concentrations in the reference site. Additionally, a nontarget screening of the river samples was applied, which resulted in the identification of 116 chemicals, most of which were pharmaceuticals. Concentrations of most of the micropollutants varied with season and correlated significantly with rainfall events, which caused dilution in the river. The highest observed concentrations were for pharmaceuticals used for treating chronic diseases, such as metformin, which is used to treat diabetes, and were among the most consumed in Juiz de Fora during the study period. Moderate ecotoxicological risks were found for metformin, oxazepam, triclosan, and tramadol. Considering the complex mixture of micropollutants in the environment, more knowledge is needed to elucidate their ecological risk in aquatic ecosystems.

    Läs mer om Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River
  • The Baltic Health Index (BHI): Assessing the social-ecological status of the Baltic Sea

    2021. Thorsten Blenckner (et al.). People and Nature 3 (2), 359-375

    Artikel

    1. Improving the health of coastal and open sea marine ecosystems represents a substantial challenge for sustainable marine resource management, since it requires balancing human benefits and impacts on the ocean. This challenge is often exacerbated by incomplete knowledge and lack of tools that measure ocean and coastal ecosystem health in a way that allows consistent monitoring of progress towards predefined management targets. The lack of such tools often limits capabilities to enact and enforce effective governance.

    2. We introduce the Baltic Health Index (BHI) as a transparent, collaborative and repeatable assessment tool. The Index complements existing, more ecological-oriented, approaches by including a human dimension on the status of the Baltic Sea, an ecosystem impacted by multiple anthropogenic pressures and governed by a multitude of comprehensive national and international policies. Using a large amount of social-ecological data available, we assessed the health of the Baltic Sea for nine goals that represent the status towards set targets, for example, clean waters, biodiversity, food provision, natural products extraction and tourism.

    3. Our results indicate that the overall health of the Baltic Sea is suboptimal (a score of 76 out of 100), and a substantial effort is required to reach the management objectives and associated targets. Subregionally, the lowest BHI scores were measured for carbon storage, contaminants and lasting special places (i.e. marine protected areas), albeit with large spatial variation.

    4. Overall, the likely future status of all goals in the BHI averaged for the entire Baltic Sea is better than the present status, indicating a positive trend towards a healthier Baltic Sea. However, in some Baltic Sea basins, the trend for specific goals was decreasing, highlighting locations and issues that should be the focus of management priorities.

    5. The BHI outcomes can be used to identify both pan-Baltic and subregional scale management priorities and to illustrate the interconnectedness between goals linked by cumulative pressures. Hence, the information provided by the BHI tool and its further development will contribute towards the fulfilment of the UN Agenda 2030 and its Sustainability Development Goals.

    Läs mer om The Baltic Health Index (BHI)
  • Association between Aquatic Micropollutant Dissipation and River Sediment Bacterial Communities

    2020. Claudia Coll (et al.). Environmental Science and Technology 54 (22), 14380-14392

    Artikel

    Assessment of micropollutant biodegradation is essential to determine the persistence of potentially hazardous chemicals in aquatic ecosystems. We studied the dissipation half-lives of 10 micropollutants in sediment–water incubations (based on the OECD 308 standard) with sediment from two European rivers sampled upstream and downstream of wastewater treatment plant (WWTP) discharge. Dissipation half-lives (DT50s) were highly variable between the tested compounds, ranging from 1.5 to 772 days. Sediment from one river sampled downstream from the WWTP showed the fastest dissipation of all micropollutants after sediment RNA normalization. By characterizing sediment bacteria using 16S rRNA sequences, bacterial community composition of a sediment was associated with its capacity for dissipating micropollutants. Bacterial amplicon sequence variants of the genera Ralstonia, Pseudomonas, Hyphomicrobium, and Novosphingobium, which are known degraders of contaminants, were significantly more abundant in the sediment incubations where fast dissipation was observed. Our study illuminates the limitations of the OECD 308 standard to account for variation of dissipation rates of micropollutants due to differences in bacterial community composition. This limitation is problematic particularly for those compounds with DT50s close to regulatory persistence criteria. Thus, it is essential to consider bacterial community composition as a source of variability in regulatory biodegradation and persistence assessments.

    Läs mer om Association between Aquatic Micropollutant Dissipation and River Sediment Bacterial Communities
  • Bacterial Diversity Controls Transformation of Wastewater-Derived Organic Contaminants in River-Simulating Flumes

    2020. Malte Posselt (et al.). Environmental Science and Technology 54 (9), 5467-5479

    Artikel

    Hyporheic zones are the water-saturated flow-through subsurfaces of rivers which are characterized by the simultaneous occurrence of multiple physical, biological, and chemical processes. Two factors playing a role in the hyporheic attenuation of organic contaminants are sediment bedforms (a major driver of hyporheic exchange) and the composition of the sediment microbial community. How these factors act on the diverse range of organic contaminants encountered downstream from wastewater treatment plants is not well understood. To address this knowledge gap, we investigated dissipation half-lives (DT50s) of 31 substances (mainly pharmaceuticals) under different combinations of bacterial diversity and bedform-induced hyporheic flow using 20 recirculating flumes in a central composite face factorial design. By combining small-volume pore water sampling, targeted analysis, and suspect screening, along with quantitative real-time PCR and time-resolved amplicon Illumina MiSeq sequencing, we determined a comprehensive set of DT50s, associated bacterial communities, and microbial transformation products. The resulting DT50s of parent compounds ranged from 0.5 (fluoxetine) to 306 days (carbamazepine), with 20 substances responding significantly to bacterial diversity and four to both diversity and hyporheic flow. Bacterial taxa that were associated with biodegradation included Acidobacteria (groups 6, 17, and 22), Actinobacteria (Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and Flavobacterium) and diverse Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and Xanthomonadaceae). Notable were the formation of valsartan acid from irbesartan and valsartan, the persistence of N-desmethylvenlafaxine across all treatments, and the identification of biuret as a novel transformation product of metformin. Twelve additional target transformation products were identified, which were persistent in either pore or surface water of at least one treatment, indicating their environmental relevance.

    Läs mer om Bacterial Diversity Controls Transformation of Wastewater-Derived Organic Contaminants in River-Simulating Flumes
  • Organic Contaminant Mixture Significantly Changes Microbenthic Community Structure and Increases the Expression of PAH Degradation Genes

    2020. Sven Iburg (et al.). Frontiers in Environmental Science 8

    Artikel

    Studying the effects of chemical contaminants on the structure and function of microbial and meiofauna communities have traditionally focused on specific effects of single contaminants on single species. This has left the complex interactions between mixtures of contaminants and its non-specific toxicity effects on the functions and structure of sediment microbial communities mostly overlooked. In order to improve our insights on such questions, we performed an experiment where Baltic Sea sediments were spiked with an ecologically relevant mixture of seven organic contaminants below specific toxicity levels and used 16S and 18S rRNA metabarcoding from RNA extracts to monitor changes in active microbial and meiofauna diversity and community structure in the spiked treatment compared to controls. In addition, we investigated the effects of exposure to this contaminant mixture on potential nitrification rates and on the expression of key-genes in the microbial nitrification and PAH degradation pathways with qPCR. There were significant differences in both eukaryotic and microbial community structures in sediments spiked with a mixture of organic contaminants. Nematoda showed a significant increase in overall relative abundance to the added contaminants (5.5 ± 1.1% higher in spiked), particularly taxa of the genus Leptolaimus (increased from 10.2 ± 5.4% in the controls to 32.5 ± 10.2% in the spiked treatment). Conversely, a significant decrease in relative abundance from 18.2 ± 5.6% in control to 7 ± 3.4% in of the genus Paraplectana was also detected. Additionally, while the abundance of active PAH degraders was significantly higher in spiked sediments than in the controls, no significant effect of our organic mixture was found on nitrification rates or the expression of AmoA (bacterial ammonia oxidizer gene). Our data indicate that mixtures of organic contaminants can have significant effects on microbenthic community structure even when its individual components are present at concentrations below its specific toxicity. In addition, we suggest that eRNA-based metabarcoding can offer important insights in microbenthic community structure and activities, and further empathizes the potential of meiofauna as bio-indicators of chemical contamination in benthic ecosystems.

    Läs mer om Organic Contaminant Mixture Significantly Changes Microbenthic Community Structure and Increases the Expression of PAH Degradation Genes
  • Bioaccumulation Potential of CPs in Aquatic Organisms: Uptake and Depuration in Daphnia magna

    2019. Mafalda Castro (et al.). Environmental Science and Technology 53 (16), 9533-9541

    Artikel

    Chlorinated paraffins (CPs) are industrial chemicals, subdivided into three categories: short chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) chlorinated paraffins. SCCPs are currently restricted in Europe and North America. MC and LCCPs are being used as substitution products, but there is a knowledge gap concerning their bioaccumulation potential in aquatic organisms. In this work, we performed laboratory bioconcentration (passive uptake) and bioaccumulation (including dietary uptake) experiments with Daphnia magna using five different CP technical substances. All tested CP technical substances were bioaccumulative in D. magna, with log BCF and log BAF values ranging between 6.7-7.0 and 6.5-7.0 (L kg lipid(-1)), respectively. An increase in carbon chain length and an increase in chlorine content (% w/w) of the CP technical substances had significant positive effects on the log BCF and log BAF values. For the different CP technical substances, 50% depuration was achieved after 2 to 10 h when D. magna were transferred to clean media. Our results show that SC, MC, and LCCPs are (very)bioaccumulative in aquatic organisms. We believe these data can aid the ongoing policy discussion concerning the environmental risk posed by CPs.

    Läs mer om Bioaccumulation Potential of CPs in Aquatic Organisms
  • Environmental Risk of Metal Contamination in Sediments of Tropical Reservoirs

    2019. Gabrielle R. Quadra (et al.). Bulletin of Environmental Contamination and Toxicology 103 (2), 292-301

    Artikel

    Reservoir sediment can work as both sink and source for contaminants. Once released into the water column, contaminants can be toxic to biota and humans. We investigate potential ecological risk to benthic organisms by metals contamination in six reservoirs in Southeast Brazil. Results of the bioavailable fraction of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), zinc (Zn), and iron (Fe) in sediment samples are presented. Considering Cu, Cd, and Zn concentrations, about 6% of the samples exceeded the threshold effect levels of sediment quality guidelines. The comparison to sediment quality guidelines is conservative because we used a moderate metal extraction. Control of contaminant sources in these reservoirs is key because they are sources of water and food. The mixture toxicity assessment showed an increased incidence of toxicity to aquatic organisms showing that mixture toxicity should be taken into account in sediment assessment criteria.

    Läs mer om Environmental Risk of Metal Contamination in Sediments of Tropical Reservoirs
  • How Important is Bioturbation for Sediment-to-Water Flux of Polycyclic Aromatic Hydrocarbons in the Baltic Sea?

    2019. Lukas Mustajärvi (et al.). Environmental Toxicology and Chemistry 38 (8), 1803-1810

    Artikel

    In the present study a recently developed benthic flow-through chamber was used to assess the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) at 4 sites on the Swedish Baltic Sea coast. The flow-through chamber allows for assessment of the potential effect of bioturbation on the sediment-to-water flux of hydrophobic organic contaminants. The sediments at the 4 investigated sites have both varying contamination degree and densities of bioturbating organisms. The flux of individual PAHs measured with the flow-through chamber ranged between 21 and 510, 11 and 370, 3 and 9700, and 62 and 2300 ng m(-2) d(-1) for the 4 sites. To assess the potential effect of bioturbation on the sediment-to-water flux, 3 flow-through and closed chambers were deployed in parallel at each site. The activity of benthic organisms is attenuated or halted because of depletion of oxygen in closed benthic chambers. Therefore, the discrepancy in flux measured with the 2 different chamber designs was used as an indication of a possible effect of bioturbation. A potential effect of bioturbation on the sediment-to-water flux by a factor of 3 to 55 was observed at sites with a high density of bioturbating organisms (e.g., Marenzelleria spp., Monoporeia affinis, and Macoma balthica of approximately 860-1200 individuals m(-2)) but not at the site with much lower organism density (<200 individuals m(-2)). One site had a high organism density and a low potential effect of bioturbation, which we hypothesize to be caused by the dominance of oligochaetes/polychaetes at this site because worms (Marenzelleria spp.) reach deeper into the sediment than native crustaceans and mollusks.

    Läs mer om How Important is Bioturbation for Sediment-to-Water Flux of Polycyclic Aromatic Hydrocarbons in the Baltic Sea?
  • Prospects for finding Junge variability-lifetime relationships for micropollutants in the Danube river

    2019. Claudia Coll (et al.). Environmental Science 21 (9), 1489-1497

    Artikel

    Persistence of chemical pollutants is difficult to measure in the field. Junge variability-lifetime relationships, correlating the relative standard deviation of measured concentrations with residence time, have been used to estimate persistence of air pollutants. Junge relationships for micropollutants in rivers could provide evidence that half-lives of compounds estimated from laboratory and field data are representative of half-lives in a specific system, location and time. Here, we explore the hypothesis that Junge relationships could exist for micropollutants in the Danube river using: (1) concentrations of six hypothetical chemicals modeled using the STREAM-EU fate and transport model, and (2) concentrations of nine micropollutants measured in the third Joint Danube Survey (JDS3) combined with biodegradation half-lives reported in the literature. Using STREAM-EU, we found that spatial and temporal variability in modeled concentrations was inversely correlated with half-life for the four micropollutants with half-lives <= 90 days. For these four modeled micropollutants, we found Junge relationships with slopes significantly different from zero in the temporal variability of concentrations at 88% of the 67 JDS3 measurement sites, and in the spatial variability of concentrations on 36% out of 365 modeled days. A Junge relationship significant at the 95% confidence level was not found in the spatial variability of nine micropollutants measured in the JDS3, nor in STREAM-EU-modeled concentrations extracted for the dates and locations of the JDS3. Nevertheless, our model scenarios suggest that Junge relationships might be found in future measurements of spatial and temporal variability of micropollutants, especially in temporal variability of pollutants measured downstream in the Danube river.

    Läs mer om Prospects for finding Junge variability-lifetime relationships for micropollutants in the Danube river
  • Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives

    2019. Anna Jaeger (et al.). Environmental Science 21 (12), 2093-2108

    Artikel

    Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.

    Läs mer om Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives
  • Emerging investigator series: effect-based characterization of mixtures of environmental pollutants in diverse sediments

    2018. Annika Jahnke (et al.). Environmental Science 20 (12), 1667-1679

    Artikel

    This study investigated whether cell-based bioassays were suitable to characterize profiles of mixture effects of hydrophobic pollutants in multiple sediments covering remote Arctic and tropical sites to highly populated sites in Europe and Australia. The total contamination was determined after total solvent extraction and the bioavailable contamination after silicone-based passive equilibrium sampling. In addition to cytotoxicity, we observed specific responses in cell-based reporter gene bioassays: activation of metabolic enzymes (arylhydrocarbon receptor: AhR, peroxisome proliferator activated receptor gamma: PPAR) and adaptive stress responses (oxidative stress response: AREc32). No mixture effects were found for effects on the estrogen, androgen, progesterone and glucocorticoid receptors, or they were masked by cytotoxicity. The bioanalytical equivalent concentrations (BEQ) spanned several orders of magnitude for each bioassay. The bioavailable BEQs (passive equilibrium sampling) typically were 10-100 times and up to 420 times lower than the total BEQ (solvent extraction) for the AhR and AREc32 assays, indicating that the readily desorbing fraction of the bioactive chemicals was substantially lower than the fraction bound strongly to the sediment sorptive phases. Contrarily, the bioavailable BEQ in the PPAR assay was within a factor of five of the total BEQ. We identified several hotspots of contamination in Europe and established background contamination levels in the Arctic and Australia.

    Läs mer om Emerging investigator series
  • Evaluating the consumption of chemical products and articles as proxies for diffuse emissions to the environment

    2018. Dämien J. Bolinius (et al.). Environmental Science 20 (10), 1427-1440

    Artikel

    In this study we have evaluated the use of consumption of manufactured products (chemical products and articles) in the EU as proxies for diffuse emissions of chemicals to the environment. The content of chemical products is relatively well known. However, the content of articles (products defined by their shape rather than their composition) is less known and currently has to be estimated from chemicals that are known to occur in a small set of materials, such as plastics, that are part of the articles. Using trade and production data from Eurostat in combination with product composition data from a database on chemical content in materials (the Commodity Guide), we were able to calculate trends in the apparent consumption and in-use stocks for 768 chemicals in the EU for the period 2003-2016. The results showed that changes in the apparent consumption of these chemicals over time are smaller than in the consumption of corresponding products in which the chemicals are present. In general, our results suggest that little change in chemical consumption has occurred over the timespan studied, partly due to the financial crisis in 2008 which led to a sudden drop in the consumption, and partly due to the fact that each of the chemicals studied is present in a wide variety of products. Estimated in-use stocks of chemicals show an increasing trend over time, indicating that the mass of chemicals in articles in the EU, that could potentially be released to the environment, is increasing. The quantitative results from this study are associated with large uncertainties due to limitations of the available data. These limitations are highlighted in this study and further underline the current lack of transparency on chemicals in articles. Recommendations on how to address these limitations are also discussed.

    Läs mer om Evaluating the consumption of chemical products and articles as proxies for diffuse emissions to the environment
  • In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats

    2018. Efstathios Reppas-Chrysovitsinos, Anna Sobek, Matthew MacLeod. Bulletin of Environmental Contamination and Toxicology 100 (1), 134-146

    Artikel

    Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential.

    Läs mer om In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats
  • Partitioning of Chlorinated Paraffins (CPs) to Daphnia magna Overlaps between Restricted and in-Use Categories

    2018. Mafalda Castro (et al.). Environmental Science and Technology 52 (17), 9713-9721

    Artikel

    Chlorinated paraffins (CPs) are high-production volume industrial chemicals consisting of n-alkanes (with 10 to 30 carbon atoms in the chain) with chlorine content from 30 to 70% of weight. In Europe, the use of short chain chlorinated paraffins (SCCPs) has been restricted by the Stockholm Convention on POPs due to their PBT (persistent, bioaccumulative and toxic) properties. Medium (MCCPs) and long chain (LCCPs) chlorinated paraffins are used as substitution products. In this work we studied the partitioning behavior of five different CP technical mixtures from the established categories (2 SCCPs, 1 MCCP, 1 LCCP and 1 CP technical mixture covering all categories) using passive dosing, by determining the partitioning coefficient of CP technical mixtures between silicone and water (Ksilicone-water) as well as between organic matter and water (Koc-water). We show that both silicone-water and organic carbon water partition coefficients overlap between different categories of CP technical mixtures. These results indicate that in-use MCCPs and LCCPs may be equally or more bioaccumulative than restricted SCCPs. For the tested mixtures, both chlorine content and carbon chain length showed a significant correlation with both Ksilicone-water and Koc-water.

    Läs mer om Partitioning of Chlorinated Paraffins (CPs) to Daphnia magna Overlaps between Restricted and in-Use Categories
  • Using Compound-Specific and Bulk Stable Isotope Analysis for Trophic Positioning of Bivalves in Contaminated Baltic Sea Sediments

    2018. Caroline Ek (et al.). Environmental Science and Technology 52 (8), 4861-4868

    Artikel

    Stable nitrogen isotopes (delta N-15) are used as indicators of trophic position (TP) of consumers. Deriving TP from delta N-15 of individual amino acids (AAs) is becoming popular in ecological studies, because of lower uncertainty than TP based on bulk delta N-15 (TPbulk). This method would also facilitate biomagnification studies provided that isotope fractionation is unaffected by toxic exposure. We compared TPAA and TPbulk estimates for a sediment-dwelling bivalve from two coastal sites, a pristine and a contaminated. Chemical analysis of PCB levels in mussels, sediments, and pore water confirmed the expected difference between sites. Both methods, but in particular the TPAA underestimated the actual TP of bivalves. Using error propagation, the total uncertainty related to the analytical precision and assumptions in the TP calculations was found to be similar between the two methods. Interestingly, the significantly higher intercept for the regression between T-AA, and TPbulk in the contaminated site compared to the pristine site indicates a higher deamination rate due to detoxification as a result of chronic exposure and a higher N-15 fractionation. Hence, there is a need for controlled experiments on assumptions underlying amino acid-specific stable isotope methods in food web and bimagnification studies.

    Läs mer om Using Compound-Specific and Bulk Stable Isotope Analysis for Trophic Positioning of Bivalves in Contaminated Baltic Sea Sediments
  • In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants

    2017. Lukas Mustajärvi (et al.). Environmental Pollution 231, 854-862

    Artikel

    Contaminated sediment can release hydrophobic organic contaminants (HOCs) and thereby act as a secondary source of primarily legacy hazardous substances to the water column. There is therefore a need for assessments of the release of HOCs from contaminated sediment for prioritization of management actions. In situ assessment of HOC sediment-to-water flux is currently done with (closed) benthic flux chambers, which have a sampling time exceeding one month. During this time, the water inside the chamber is depleted of oxygen and the effect of bioturbation on the sediment-to-water release of HOCs is largely ignored. Here we present a novel benthic flux chamber, which measures sediment-to-water flux of legacy HOCs within days, and includes the effect of bioturbation since ambient oxygen levels inside the chamber are maintained by continuous pumping of water through the chamber. This chamber design allows for sediment-to-water flux measurements under more natural conditions. The chamber design was tested in a contaminated Baltic Sea bay. Measured fluxes were 62–2300 ng m−2 d−1 for individual polycyclic aromatic hydrocarbons (PAHs), and 5.5–150 ng m−2 d−1 for polychlorinated biphenyls (PCBs). These fluxes were 3–23 times (PAHs) and 12–74 times (PCBs) higher than fluxes measured with closed benthic chambers deployed in parallel at the same location. We hypothesize that the observed difference in HOC flux between the two chamber designs are partly an effect of bioturbation. This hypothesized effect of bioturbation was in accordance with literature data from experimental studies.

    Läs mer om In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants
  • A strategic screening approach to identify transformation products of organic micropollutants formed in natural waters

    2017. Zhe Li (et al.). Environmental Science 19 (4), 488-498

    Artikel

    Many transformation products (TPs) from organic micropollutants are not included in routine environmental monitoring programs due to limited knowledge of their occurrence and fate. An efficient method to identify and prioritize critical compounds in terms of environmental relevance is needed. In this study, we applied a strategic screening approach based on a case-control concept to identify TPs formed along wastewater-impacted rivers. Time-integrated samples were collected over one week at both ends of a river stretch downstream of a wastewater treatment plant (WWTP) outfall and were analyzed by ultrahigh performance liquid chromatography interfaced with quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS/MS). The screening procedure of the high-resolution MS (HRMS) datasets consisted of three major steps: (i) screening for parent compounds (PCs) attenuated along the stretch; (ii) prediction of potential TPs from these PCs; and (iii) screening for TPs from this list with an increasing trend along the stretch. In total, 32 PCs decreased along the investigated river stretches. From these PCs, eight TPs had increasing concentrations along the studied stretches and could be tentatively identified. The identification of one TP (benzamide) was confirmed by its corresponding reference standard, while no standards were available for the remaining TPs.

    Läs mer om A strategic screening approach to identify transformation products of organic micropollutants formed in natural waters
  • An academic researcher's guide to increased impact on regulatory assessment of chemicals

    2017. Marlene Ågerstrand (et al.). Environmental Science 19 (5), 644-655

    Artikel

    The interactions between academic research and regulatory assessment of chemicals may in theory seem straightforward: researchers perform studies, and these studies are used by regulators for decision-making. However, in practice the situation is more complex, and many factors decide a research study's regulatory use. According to several EU chemical legislations, all available and relevant studies can be used in hazard and risk assessment of chemicals. However, in practice, standard tests conducted under GLP and sponsored and provided by industry are predominantly used. Peer-reviewed studies from independent sources are often disregarded or disputed since they often do not comply with regulatory data requirements and quality criteria. To help bridge such a gap, the aim of this paper is to give an overview of the general workings of legislation of chemicals and propose a set of actions to increase the usability of research data. In the end, this may increase the use of academic research for decision-making and ultimately result in more science-based policies. From a policy perspective, useful scientific evidence comprises those studies that are sufficiently reliable and relevant. This is not in contradiction to the aims of research and generally accepted scientific standards.

    Läs mer om An academic researcher's guide to increased impact on regulatory assessment of chemicals
  • Passive dosing of triclosan in multigeneration tests with copepods – stable exposure concentrations and effects at the low μg/L range

    2017. Anton Ribbenstedt (et al.). Environmental Toxicology and Chemistry 36 (5), 1254-1260

    Artikel

    Ecotoxicity testing is a crucial component of chemical risk assessment. Still, due to methodological difficulties related to controlling exposure concentrations over time, data on long-term effects of organic chemicals at low concentrations are limited. The aim of the present study was, therefore, to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-wk multigeneration population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water) was 10466 +/- 1927. A population development test was conducted at 3 concentration levels of triclosan that were measured to be 3 mu g/L to 5 mu g/L, 7 mu g/L to 11 mu g/L and 16 mu g/L to 26 mu g/L. The results demonstrate that passive dosing is applicable for long-term ecotoxicity testing of organic chemicals, including during significant growth of the test organism population. Shifts in the demographic structure of the population during exposure suggest the most severe effects were exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. The results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment because even the most sensitive endpoint was not significant until after 7 d of exposure.

    Läs mer om Passive dosing of triclosan in multigeneration tests with copepods – stable exposure concentrations and effects at the low μg/L range
  • Screening-level exposure-based prioritization to identify potential POPs, vPvBs and planetary boundary threats among Arctic contaminants

    2017. Efstathios Reppas-Chrysovitsinos, Anna Sobek, Matt MacLeod. Emerging Contaminants 3 (2), 85-94

    Artikel

    A report that reviews Arctic contaminants that are not currently regulated as persistent organic pollutants (POPs) under international treaties was recently published by the Arctic Monitoring and Assessment Programme (AMAP). We evaluated 464 individual chemicals mentioned in the AMAP report according to hazard profiles for POPs, very persistent and very bioaccumulative (vPvB) chemicals, and two novel and distinct hazard profiles we derived from the planetary boundary threat framework. The two planetary boundary threat profiles assign high priority to chemicals that will be mobile and poorly reversible environmental contaminants. Utilizing persistence as a proxy for poor reversibility, we defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that are potential planetary boundary threats. We used in silico estimates of physicochemical properties and multimedia models to calculate hazard metrics for persistence, bioaccumulation and long-range transport potential, then we synthesized this information into four exposure-based hazard scores of the potential of each AMAP chemical to fit each of the POP, vPvB, APC and WPC exposure-based hazard profiles. As an alternative to adopting a “bright line” score that represented cause for concern, we scored the AMAP chemicals by benchmarking against a reference set of 148 known and relatively well-studied contaminants and expressed their exposure-based hazard scores as percentile ranks against the scores of the reference set chemicals. Our results show that scores in the four exposure-based hazard profiles provide complementary information about the potential environmental exposure-based hazards of the AMAP chemicals. Our POP, vPvB, APC and WPC exposure-based hazard scores identify high priority chemicals for further study from among the AMAP contaminants.

    Läs mer om Screening-level exposure-based prioritization to identify potential POPs, vPvBs and planetary boundary threats among Arctic contaminants
  • Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean

    2017. Daniel Carrizo (et al.). Environmental Science and Technology 51 (14), 7913-7919

    Artikel

    There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of Sigma 6DDT (0.10-66 pg L-1) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.

    Läs mer om Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean
  • Temporal Trends of C-8-C-36 Chlorinated Paraffins in Swedish Coastal Sediment Cores over the Past 80 Years

    2017. Bo Yuan (et al.). Environmental Science and Technology 51 (24), 14199-14208

    Artikel

    Temporal trends of chlorinated paraffins (CPs) were analyzed in three sediment cores collected near different potential CP sources along the Swedish Baltic Sea coast. C-8-C-36 CPs were found in sediment dating back to the 1930s. The maximum CP concentrations found in proximity to a metropolitan sewage treatment plant, a wood related industrial area, and a steel factory were 48; 160, and 1400 ng/g d.w., respectively, in sediment sections dated from the early 1990s or the 2000s. The temporal trends agree with statistics on CP importation in Sweden or local industrial activities. MCCPs (C-14-C-17 CPs) and LCCPs (C->= 18 CPs) predominated, in most sediments with average percentage compositions of 47 +/- 20% and 37 +/- 20%, respectively. Concentrations of SCCPs in the three cores showed a decreasing trend in recent years. The temporal trends of MCCPs indicated that these are currently the predominant CPs in use. This study showed for the first time that LCCPs from C-18 to C-36, as well as C-8-C-17 CPs, are persistent in sediments over the last 30-80 years, indicating that CPs are persistent chemicals regaidless of alkane-chain lengths.

    Läs mer om Temporal Trends of C-8-C-36 Chlorinated Paraffins in Swedish Coastal Sediment Cores over the Past 80 Years
  • Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing

    2017. Lukas Mustajärvi (et al.). Environmental Science 19 (11), 1404-1413

    Artikel

    Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose–response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.

    Läs mer om Transferring mixtures of chemicals from sediment to a bioassay using silicone-based passive sampling and dosing
  • Fate of Pharmaceuticals and Their Transformation Products in Four Small European Rivers Receiving Treated Wastewater

    2016. Zhe Li, Anna Sobek, Michael Radke. Environmental Science and Technology 50 (11), 5614-5621

    Artikel

    A considerable knowledge gap exists with respect to the fate and environmental relevance of transformation products (TPs) of polar organic micropollutants in surface water. To narrow this gap we investigated the fate of 20 parent compounds (PCs) and 11 characteristic TPs in four wastewater-impacted rivers. Samples were obtained from time-integrated active sampling as well as passive sampling using polar organic chemical integrative samplers (POCIS). Seventeen out of the 20 PCs were detected in at least one of the rivers. All the PCs except acesulfame, carbamazepine, and fluconazole were attenuated along the studied river stretches, with the largest decrease found in the smallest river which had an intense surface water-pore water exchange. Seven TPs were detected, all of which were already present directly downstream of the WWTP outfall, suggesting that the WWTPs were a major source of TPs to the recipients. For anionic compounds, attenuation was the highest in the two rivers with the lowest discharge, while the pattern was not as clear for neutral or cationic compounds. For most compounds the results obtained from active sampling were not significantly different from those using POCIS, demonstrating that the cost and labor efficient POCIS is suitable to determine the attenuation of organic micropollutants in rivers.

    Läs mer om Fate of Pharmaceuticals and Their Transformation Products in Four Small European Rivers Receiving Treated Wastewater
  • Modeling total particulate organic carbon (POC) flows in the Baltic Sea catchment

    2016. Kim Dahlgren Strååt (et al.). Biogeochemistry 128 (1-2), 51-65

    Artikel

    The largest input source of carbon to the Baltic Sea catchment is river discharge. A tool for modeling riverine particulate organic carbon (POC) loads on a catchment scale is currently lacking. The present study describes a novel dynamic model for simulating flows of POC in all major rivers draining the Baltic Sea catchment. The processes governing POC input and transport in rivers described in the model are soil erosion, in-stream primary production and litter input. The Baltic Sea drainage basin is divided into 82 sub-basins, each comprising several land classes (e.g. forest, cultivated land, urban areas) and parameterized using GIS data on soil characteristics and topography. Driving forces are temperature, precipitation, and total phosphorous concentrations. The model evaluation shows that the model can predict annual average POC concentrations within a factor of about 2, but generally fails to capture the timing of monthly peak loads. The total annual POC load to the Baltic Sea is estimated to be 0.34 Tg POC, which constitutes circa 7-10 % of the annual total organic carbon (TOC) load. The current lack of field measurements of POC in rivers hampers more accurate predictions of seasonality in POC loads to the Baltic Sea. This study, however, identifies important knowledge gaps and provides a starting point for further explorations of large scale POC mass flows.

    Läs mer om Modeling total particulate organic carbon (POC) flows in the Baltic Sea catchment
  • Observation-Based Assessment of PBDE Loads in Arctic Ocean Waters

    2016. Joan A. Salvado (et al.). Environmental Science and Technology 50 (5), 2236-2245

    Artikel

    Little is known about the distribution of polybrominated diphenyl ethers (PBDE)-also known as flame retardants- in major ocean compartments, with no reports yet for the large deep-water masses of the Arctic Ocean. Here, PBDE concentrations, congener patterns and inventories are presented for the different water masses of the pan-Arctic shelf seas and the interior basin. Seawater samples were collected onboard three cross-basin oceanographic campaigns in 2001, 2005, and 2008 following strict trace-clean protocols. Sigma 14PBDE concentrations in the Polar Mixed Layer (PML; a surface water mass) range from 0.3 to 11.2 pg.L-1, with higher concentrations in the pan-Arctic shelf seas and lower levels in the interior basin. BDE-209 is the dominant congener in most of the pan-Arctic areas except for the ones close to North America, where pentaBDE and tetra-BDE congeners predominate. In deep-water masses, Sigma 14PBDE concentrations are up to 1 order of magnitude higher than in the PML. Whereas BDE-209 decreases with depth, the less-brominated congeners, particularly BDE-47 and BDE-99, increase down through the water column. Likewise, concentrations of BDE-71 -a congener not present in any PBDE commercial mixture increase with depth, which potentially is the result of debromination of BDE-209. The inventories in the three water masses of the Central Arctic Basin (PML, intermediate Atlantic Water Layer, and the Arctic Deep Water Layer) are 158 +/- 77 kg, 6320 +/- 235 kg and 30800 +/- 3100 kg, respectively. The total load of PBDEs in the entire Arctic Ocean shows that only a minor fraction of PBDEs emissions are transported to the Arctic Ocean. These findings represent the first PBDE data in the deep-water compartments of an ocean.

    Läs mer om Observation-Based Assessment of PBDE Loads in Arctic Ocean Waters
  • Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water

    2016. Efstathios Reppas-Chrysovitsinos, Anna Sobek, Matthew MacLeod. Environmental Science 18 (6), 667-676

    Artikel

    Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or water (KMW) are required for models of fate and transport, high-throughput exposure assessment and passive sampling. KMA and KMW have been measured for a growing number of chemical/ material combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers, collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate physicochemical properties of the compounds and we employed an empirical correlation based on Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K. Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273 KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol-air partition ratio (KOA) and KMW from the EPI Suite-estimated octanol-water (KOW) partition ratio. Similarly, using multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER) models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2) uncertainties associated with treating all different polymers as a single bulk polymeric material compartment. The models we have developed are suitable for screening assessments of the tendency for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of organic chemicals in the indoor environment. In screening applications we recommend that K-MA and K-MW be modeled as 0.06 x K-OA and 0.06 x K-OW respectively, with an uncertainty range of a factor of 15.

    Läs mer om Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water
  • The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards

    2016. Anna Sobek (et al.). Environmental Science 18 (8), 1042-1049

    Artikel

    A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis.

    Läs mer om The dilemma in prioritizing chemicals for environmental analysis
  • Baltic Sea sediment records: Unlikely near-future declines in PCBs and HCB

    2015. Anna Sobek (et al.). Science of the Total Environment 518, 8-15

    Artikel

    We present a comprehensive study on PCBs and HCB in dated sediment cores from the Baltic Sea covering the 20th century, and compare their spatiotemporal trends with those of PCDD/Fs from the same areas. PCB concentrations in coastal impacted sediment followed the temporal trend of estimated global emissions of PCBs and thus responded quickly to changes in global industrial use, whereas concentrations in offshore sediment needed 10-20 years longer to respond. Differences in spatiotemporal trends of PCDD/Fs and PCBs were smaller than expected based on documented differences in key sources and source areas. Sediment concentrations of HCB varied little over time and space, but concentrations are increasing in recent years. The steep PCB concentration reduction over time observed for the late 20th century levelled off during the last 20 years, and levels of PCBs appear to be at or near a steady-state condition. Capsule: PCB concentrations in Baltic Sea sediments appear to be at or near steady-state, and no significant concentration decreases are to be expected in the near future.

    Läs mer om Baltic Sea sediment records
  • Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams

    2015. Zhe Li, Anna Sobek, Michael Radke. Environmental Science and Technology 49 (10), 6009-6017

    Artikel

    The hyporheic zone—the transition region beneath and alongside the stream bed—is a central compartment for attenuation of organic micropollutants in rivers. It provides abundant sorption sites and excellent conditions for biotransformation. We used a bench-scale flume to study the fate of 19 parent pharmaceuticals (PPs) and the formation of 11 characteristic transformation products (TPs) under boundary conditions similar to those in hyporheic zones. The persistence of PPs ranged from readily degradable with a dissipation half-life (DT50) as short as 1.8 days (acetaminophen, ibuprofen) to not degradable (chlorthalidone, fluconazole). The temporal and spatial patterns of PP and TP concentrations in pore water were heterogeneous, reflecting the complex hydraulic and biogeochemical conditions in hyporheic zones. Four TPs (carbamazepine-10,11-epoxide, metoprolol acid, 1-naphthol, and saluamine) were exclusively formed in the sediment compartment and released to surface water, highlighting their potential to be used as indicators for characterizing hyporheic transformation of micropollutants in streams. The accumulation of certain TPs over the experimental period illustrates that we might face a peak of secondary contamination by TPs far from the point of release of the original contaminants into a stream. Such TPs should be considered as priority candidates for a higher-tier environmental risk assessment.

    Läs mer om Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams
  • Assessment of PCDD/F Source Contributions in Baltic Sea Sediment Core Records

    2014. Anteneh T. Assefa (et al.). Environmental Science and Technology 48 (16), 9531-9539

    Artikel

    Spatial and temporal trends of sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the Baltic Sea were evaluated by positive matrix factorization (PMF) and principal component analysis (PCA). Sediment cores were sampled at eight coastal, one coastal reference, and six offshore sites covering the northern to the southern Baltic Sea. The cores, which covered the period 1919-2010, were sliced into 2-3 cm disks among which 8-11 disks per core (in total 141 disks) were analyzed for all tetra- through octa-CDD/Fs. Identification and apportionment of PCDD/F sources was carried out using PMF. Five stable model PCDD/F congener patterns were identified, which could be associated with six historically important source types: (i) atmospheric background deposition (ABD), (ii) use and production of pentachlorophenol (PCP), (iii) use and production of tetra-chlorophenol (TeCP), (iv) high temperature processes (Thermal), (v) hexa-CDD-related sources (HxCDD), and (vi) chlorine-related sources (Chi), all of which were still represented in the surface layers. Overall, the last four decades of the period 1920-2010 have had a substantial influence on the Baltic Sea PCDD/F pollution, with 88 +/- 7% of the total amount accumulated during this time. The 1990s was the peak decade for all source types except TeCP, which peaked in the 1980s in the northern Baltic Sea and has still not peaked in the southern part. The combined impact of atmospheric-related emissions (ABD and Thermal) was dominant in the open sea system throughout the study period (1919-2010) and showed a decreasing south to north trend (always >80% in the south and >50% in the north). Accordingly, to further reduce levels of PCDD/Fs in the open Baltic Sea ecosystem, future actions should focus on reducing atmospheric emissions.

    Läs mer om Assessment of PCDD/F Source Contributions in Baltic Sea Sediment Core Records
  • Coastal sediments in the Gulf of Bothnia as a source of dissolved PCDD/Fs and PCBs to water and fish

    2014. Anna Sobek (et al.). Science of the Total Environment 487, 463-470

    Artikel

    High levels of PCDD/Fs and PCBs in Baltic Sea biota have been a matter of great concern during the last decades. We measured the freely dissolved concentrations of PCDD/Fs and PCBs in sediment pore water and bottom water in eight areas along the Swedish coast of the Gulf of Bothnia, by using state-of-the-art passive samplers. Chemical activity ratios (calculated from freely dissolved concentrations in pore water and bottom water based on chemical activity ratios) for PCDD/Fs were higher than 1 at all stations (PCDD/Fs average 27; stdev 22). High activity ratios suggest that the sediments have a potential to act as a source of dissolved PCDD/Fs to the water column. Activity ratios for PCBs varied between 0.3 and 17 (average 2; stdev 4). The concentrations of PCDD/Fs and PCBs in bottom water were significantly correlated with concentrations in sediment pore water (p < 0.00001 to p = 0.03) as well as with concentrations in juvenile perch caught in the same areas (p < 0.00001 to p = 0.02). To our knowledge, this is the first study demonstrating a correlation between in-situ measured freely dissolved PCDD/F concentrations and lipid-normalized contents in stationary fish. Our results confirm that freely dissolved concentrations should be used as chemical predictors of bioaccumulation. The results from this study imply that continued efforts to reduce levels of PCDD/Fs and PCBs in coastal sediments will have positive effects on concentrations of these contaminants in lower trophic levels of Baltic Sea ecosystems.

    Läs mer om Coastal sediments in the Gulf of Bothnia as a source of dissolved PCDD/Fs and PCBs to water and fish
  • Deep Water Masses and Sediments Are Main Compartments for Polychlorinated Biphenyls in the Arctic Ocean

    2014. Anna Sobek, Örjan Gustafsson. Environmental Science and Technology 48 (12), 6719-6725

    Artikel

    There is a wealth of studies of polychlorinated biphenyls (PCB) in surface water and biota of the Arctic Ocean. Still, there are no observation-based assessments of PCB distribution and inventories in and between the major Arctic Ocean compartments. Here, the first water column distribution of PCBs in the central Arctic Ocean basins (Nansen, Amundsen, and Makarov) is presented, demonstrating nutrient-like vertical profiles with 5-10 times higher concentrations in the intermediate and deep water masses than in surface waters. The consistent vertical profiles in all three Arctic Ocean basins likely reflect buildup of PCBs transported from the shelf seas and from dissolution and/or mineralization of settling particles. Combined with measurement data on PCBs in other Arctic Ocean compartments collected over the past decade, the total Arctic Ocean inventory of Sigma 7PCB was estimated to 182 +/- 40 t (+/- 1 standard error of the mean), with sediments (144 +/- 40 t), intermediate (5 +/- 1 t) and deep water masses (30 +/- 2 t) storing 98% of the PCBs in the Arctic Ocean. Further, we used hydrographic and carbon cycle parametrizations to assess the main pathways of PCBs into and out of the Arctic Ocean during the 20th century. River discharge appeared to be the major pathway for PCBs into the Arctic Ocean with 115 +/- 11 t, followed by ocean currents (52 +/- 17 t) and net atmospheric deposition (30 +/- 28 t). Ocean currents provided the only important pathway out of the Arctic Ocean, with an estimated cumulative flux of 22 +/- 10 t. The observation-based inventory of Sigma 7PCB of 182 +/- 40 t is consistent with the contemporary inventory based on cumulative fluxes for Sigma 7PCB of 173 +/- 36 t. Information on the concentration and distribution of PCBs in the deeper compartments of the Arctic Ocean improves our understanding of the large-scale fate of POPs in the Arctic and may also provide a means to test and improve models used to assess the fate of organic pollutants in the Arctic.

    Läs mer om Deep Water Masses and Sediments Are Main Compartments for Polychlorinated Biphenyls in the Arctic Ocean
  • Temporal Trends of PCDD/Fs in Baltic Sea Sediment Cores Covering the 20th Century

    2014. Anteneh T. Assefa (et al.). Environmental Science and Technology 48 (2), 947-953

    Artikel

    The pollution trend of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the Baltic Sea region was studied based on depth profiles of PCDD/Fs in sediment cores collected from six-offshore areas, eight coastal sites impacted by industrial/urban emissions, and one coastal reference site. A general trend was observed for the offshore and coastal reference sites with substantial increase in PCDD/F concentrations in the mid-late 1970s and peak levels during 1985-2002. The overall peak year for PCDD/Fs in Baltic Sea offshore areas was estimated (using spline-fit modeling) to 1994 +/- 5 years, and a half-life in sediments was estimated at 29 +/- 11 years. For the industrial/urban impacted coastal sites, the temporal trend was more variable with peak years occurring 1-2 decades earlier compared to offshore areas. The substantial reductions from peak levels (38 +/- 11% and 81 +/- 12% in offshore and coastal areas, respectively) reflect domestic and international actions taken for reduction of the release of PCDD/Fs to the environment. The modeled overall half-life and reductions of PCDD/Fs in offshore Baltic Sea sediment correspond well to both PCDD/F trends in European lakes without any known direct. PCDD/F sources (half-lives 30 and 32 years), and previously modeled reduction in atmospheric deposition of,PCDD/Fs to the Baltic Sea since 1990. These observations support previous findings of a common diffuse source, such as long-range air transport of atmospheric emissions, as the prime source of PCDD/Fs to the Baltic Sea region. The half-life of PCDD/Fs in Baltic Sea offshore sediments was estimated to be approximately 2 and 4-6 times longer than in semirural and urban European air, respectively. This study highlights the need for further international actions to reduce the levels of PCDD/Fs in Baltic Sea air specifically and in European air in general.

    Läs mer om Temporal Trends of PCDD/Fs in Baltic Sea Sediment Cores Covering the 20th Century
  • Using Model-Based Screening to Help Discover Unknown Environmental Contaminants

    2014. Michael S. McLachlan (et al.). Environmental Science and Technology 48 (13), 7264-7271

    Artikel

    Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of similar to 50 pg m(-3) in Stockholm air and similar to 0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjosa at similar to 1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

    Läs mer om Using Model-Based Screening to Help Discover Unknown Environmental Contaminants
  • Aerosol-Water Distribution of PCDD/Fs and PCBs in the Baltic Sea Region

    2013. Anna Sobek (et al.). Environmental Science and Technology 47 (2), 781-789

    Artikel

    Atmospheric deposition is a major pathway of PCDD/Fs to the Baltic Sea. We studied the aerosol-water distribution for aerosols collected close to the Baltic Sea in order to investigate the availability of pollutants sorbed to aerosols deposited on water. Aerosols were analyzed for both total concentration (Soxhlet extraction) and the freely dissolved water concentration (extraction with 17-mu m polyoxymethylene equilibrium passive samplers). Concentrations of PCDD/F and sum PCB-7 in aerosols were 65-1300 pg/g dw TEQ and 22-100 ng/g dw, respectively. Organic carbon (OC)-normalized aerosol water distribution ratios (K-aer-water,K-OC) were consistently lower (factor 2-60) than previously determined sediment organic carbon water distribution ratios (K-sed,K-OC). Hence PCDD/Fs and PCBs entering the Baltic Sea through aerosol deposition seem to be more available for desorption to the water phase than PCDD/Fs and PCBs sorbed to sediment. Further, we investigated whether aerosol water distribution may be predicted from the air aerosol partitioning constant multiplied by the Henry's Law constant. This proposed model for aerosol water distribution underestimated measured values for PCBs by factors of 1-17 and for PCDD/Fs by more than a factor 10. These findings can be used to improve future fate modeling of PCBs and PCDD/Fs in marine environments and specifically the Baltic Sea.

    Läs mer om Aerosol-Water Distribution of PCDD/Fs and PCBs in the Baltic Sea Region
  • In the shadow of the Cosmetic Directive - Inconsistencies in EU environmental hazard classification requirements for UV-filters

    2013. Anna Sobek (et al.). Science of the Total Environment 461, 706-711

    Artikel

    UV-filters are chemicals with potentially environmental hazardous properties. In the European Union (EU), UV-filters contained in sunscreen products are currently regulated by the Cosmetic Directive (from July 2013 by the Cosmetic Products Regulation). Environmental hazard classifications according to the regulation on classification, labelling and packaging of substances and mixtures (CLP) must be determined for UV-filters contained in industrial chemical products, whereas UV-filters contained in sunscreens are exempted from CLP. In this study we determined the potential environmental hazard classifications of UV-filters and sunscreen products if the CLP regulation was to be required for cosmetic products. Two sunscreen products were evaluated in accordance with the aquatic environmental hazard criteria for mixtures. The results highlight that the inconsistencies in the current EU regulation of UV filters hamper the risk management of environmental hazards of UV filters used in cosmetic products. Almost 50% of the investigated UV-filters approved for use in cosmetic products on the European market according to the current Cosmetic Directive were identified to meet the CLP classification as being hazardous to the aquatic environment. Assuming a worst-case scenario, the two examined sunscreens could both be classified as hazardous to the aquatic environment with long-lasting effects according to CLP classification criteria. Hence, if the CLP regulation was applicable to sunscreen products, both brands could potentially be labelled with the environmental hazard pictogram and associated hazard and precautionary statements. Including cosmetic products, and thereby sunscreens, in the CLP regulation would contribute to a more harmonized and transparent regulation of potentially hazardous substances on the EU market.

    Läs mer om In the shadow of the Cosmetic Directive - Inconsistencies in EU environmental hazard classification requirements for UV-filters

Visa alla publikationer av Anna Sobek vid Stockholms universitet