Stockholm university logo, link to start page

Kristoffer Hylander

About me

I am a landscape ecologist with an interest in patterns and determinants of species richness and composition in space and time in both natural and human modified landscapes. I have most experience from forest systems (boreal forest and montane tropical forests), but have also been studying tropical agricultural landscapes. See more about the research projects, involved people and news on

I am serving as Head of Department since Aug 1, 2021.



I am involved in teaching of the master course "Biodiversity - patterns and processes" that is given in the autumn.


Master students

I supervise master students regularly. If you are a student: check my research projects and see if you get inspired to do a project on landscape ecology in Sweden or perhaps in Ethiopia. If you would like to do it in Ethiopia there is a posibility to apply for an MFS-grant.


My current research is mostly focusing on

1) Variation in local climate and how that affects the performance and distribution of plants (both vascular plants and bryophytes)

Under this theme I do research with support from both Formas and Bolin Centre for Climate Research at Stockholm University (see link). We study effects of extreme events and distribution patterns in managed landscape.

See more about the research projects, involved people and news on

2) Biodiversity and Ecosystem services across Ethiopian agroecosystems

I have much involvement in Ethiopia since many years now. I have a new interdisciplinary project focusing on water in the landscape and it variable use, quality, biodiversity content across land-use gradients. Moreover, I am heavily involved in new projects on biodiversity, coffee diseases and climate in coffee agroforestry. These projects are financed by VR and Bolin Centre for Climate Research (To Ayco Tack with me as co-PI).  

See more about the research projects, involved people and news on

Research projects


A selection from Stockholm University publication database

  • Forest microclimates and climate change

    2021. Pieter De Frenne (et al.). Global Change Biology 27 (11), 2279-2297


    Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.

    Read more about Forest microclimates and climate change
  • Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across a landscape in Arabica coffee's native range

    2021. Beyene Zewdie (et al.). Agriculture, Ecosystems & Environment 311


    Agroforestry systems can provide habitats for a rich biodiversity including multitrophic interactions, which presents opportunities to develop natural pest control. Shade coffee systems in several coffee growing areas of the world host such unique habitats where pests and their natural enemies interact. One of the major global challenges for coffee production, coffee leaf rust caused by the fungal pathogen Hemileia vastatrix is attacked by the fungal hyperparasite, Lecanicillium lecanii. However, we lack insights in the dynamics and biocontrol potential of the hyperparasite on coffee leaf rust from landscapes in Arabica coffee's native range. To understand the temporal dynamics across landscapes and environmental drivers of the rust and hyperparasite, and the potential for biocontrol of the rust by the hyperparasite, we studied the rust and hyperparasite during the dry and wet seasons for three consecutive years at 60 sites across a gradient of coffee management in southwestern Ethiopia. We found that coffee leaf rust was more severe during the dry season, whereas the hyperparasite was more severe during the wet season in two out of three years. The rust growth rate from the wet to the dry season transition was negatively related to the hyperparasite index during the wet season, implying a potential top-down control. Coffee leaf rust was generally more severe at lower altitudes in the dry season, whereas the hyperparasite was more severe at high altitude. The rust incidence increased with management intensity, while the hyperparasite was more common under less intensive management. This study could be interesting in that it represents a landscape where Arabica coffee originated and the rust and hyperparasite might have a long co-evolutionary history. Our findings highlight the potential of the hyperparasite to suppress the rust's growth rate from the wet to dry season transition when the rust severity could otherwise be at its peak. We show that less intensively managed landscapes with dense shade levels are likely to increase hyperparasite abundance and result in an improved top-down control of the rust. However, more detailed knowledge is needed on the interaction of these species to assess its importance for reducing rust induced yield losses or the risk of rust outbreaks.

    Read more about Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across a landscape in Arabica coffee's native range
  • Climate limitation at the cold edge

    2020. Caroline Greiser (et al.). Ecography


    The role of climate in determining range margins is often studied using species distribution models (SDMs), which are easily applied but have well-known limitations, e.g. due to their correlative nature and colonization and extinction time lags. Transplant experiments can give more direct information on environmental effects, but often cover small spatial and temporal scales. We simultaneously applied a SDM using high-resolution spatial predictors and an integral projection (demographic) model based on a transplant experiment at 58 sites to examine the effects of microclimate, light and soil conditions on the distribution and performance of a forest herb, Lathyrus vernus, at its cold range margin in central Sweden. In the SDM, occurrences were strongly associated with warmer climates. In contrast, only weak effects of climate were detected in the transplant experiment, whereas effects of soil conditions and light dominated. The higher contribution of climate in the SDM is likely a result from its correlation with soil quality, forest type and potentially historic land use, which were unaccounted for in the model. Predicted habitat suitability and population growth rate, yielded by the two approaches, were not correlated across the transplant sites. We argue that the ranking of site habitat suitability is probably more reliable in the transplant experiment than in the SDM because predictors in the former better describe understory conditions, but that ranking might vary among years, e.g. due to differences in climate. Our results suggest that L. vernus is limited by soil and light rather than directly by climate at its northern range edge, where conifers dominate forests and create suboptimal conditions of soil and canopy-penetrating light. A general implication of our study is that to better understand how climate change influences range dynamics, we should not only strive to improve existing approaches but also to use multiple approaches in concert.

    Read more about Climate limitation at the cold edge
  • Hiding from the climate

    2020. Caroline Greiser (et al.). Global Change Biology


    Climate warming is likely to shift the range margins of species poleward, but fine-scale temperature differences near the ground (microclimates) may modify these range shifts. For example, cold-adapted species may survive in microrefugia when the climate gets warmer. However, it is still largely unknown to what extent cold microclimates govern the local persistence of populations at their warm range margin. We located 99 microrefugia, defined as sites with edge populations of 12 widespread boreal forest understory species (vascular plants, mosses, liverworts and lichens) in an area of ca. 24,000 km(2) along the species' southern range margin in central Sweden. Within each population, a logger measured temperature eight times per day during one full year. Using univariate and multivariate analyses, we examined the differences of the populations' microclimates with the mean and range of microclimates in the landscape, and identified the typical climate, vegetation and topographic features of these habitats. Comparison sites were drawn from another logger data set (n = 110), and from high-resolution microclimate maps. The microrefugia were mainly places characterized by lower summer and autumn maximum temperatures, late snow melt dates and high climate stability. Microrefugia also had higher forest basal area and lower solar radiation in spring and autumn than the landscape average. Although there were common trends across northern species in how microrefugia differed from the landscape average, there were also interspecific differences and some species contributed more than others to the overall results. Our findings provide biologically meaningful criteria to locate and spatially predict potential climate microrefugia in the boreal forest. This opens up the opportunity to protect valuable sites, and adapt forest management, for example, by keeping old-growth forests at topographically shaded sites. These measures may help to mitigate the loss of genetic and species diversity caused by rear-edge contractions in a warmer climate.

    Read more about Hiding from the climate
  • Global buffering of temperatures under forest canopies

    2019. Pieter De Frenne (et al.). Nature Ecology & Evolution 3 (5), 744-749


    Macroclimate warming is often assumed to occur within forests despite the potential for tree cover to modify microclimates. Here, using paired measurements, we compared the temperatures under the canopy versus in the open at 98 sites across 5 continents. We show that forests function as a thermal insulator, cooling the understory when ambient temperatures are hot and warming the understory when ambient temperatures are cold. The understory versus open temperature offset is magnified as temperatures become more extreme and is of greater magnitude than the warming of land temperatures over the past century. Tree canopies may thus reduce the severity of warming impacts on forest biodiversity and functioning.

    Read more about Global buffering of temperatures under forest canopies
  • Monthly microclimate models in a managed boreal forest landscape

    2018. Caroline Greiser (et al.). Agricultural and Forest Meteorology 250-251, 147-158


    The majority of microclimate studies have been done in topographically complex landscapes to quantify and predict how near-ground temperatures vary as a function of terrain properties. However, in forests understory temperatures can be strongly influenced also by vegetation. We quantified the relative influence of vegetation features and physiography (topography and moisture-related variables) on understory temperatures in managed boreal forests in central Sweden. We used a multivariate regression approach to relate near-ground temperature of 203 loggers over the snow-free seasons in an area of ∼16,000 km2 to remotely sensed and on-site measured variables of forest structure and physiography. We produced climate grids of monthly minimum and maximum temperatures at 25 m resolution by using only remotely sensed and mapped predictors. The quality and predictions of the models containing only remotely sensed predictors (MAP models) were compared with the models containing also on-site measured predictors (OS models). Our data suggest that during the warm season, where landscape microclimate variability is largest, canopy cover and basal area were the most important microclimatic drivers for both minimum and maximum temperatures, while physiographic drivers (mainly elevation) dominated maximum temperatures during autumn and early winter. The MAP models were able to reproduce findings from the OS models but tended to underestimate high and overestimate low temperatures. Including important microclimatic drivers, particularly soil moisture, that are yet lacking in a mapped form should improve the microclimate maps. Because of the dynamic nature of managed forests, continuous updates of mapped forest structure parameters are needed to accurately predict temperatures. Our results suggest that forest management (e.g. stand size, structure and composition) and conservation may play a key role in amplifying or impeding the effects of climate-forcing factors on near-ground temperature and may locally modify the impact of global warming.

    Read more about Monthly microclimate models in a managed boreal forest landscape
  • Calcicolous plants colonize limed mires after long-distance dispersal

    2018. Niklas Lonnell, Kristoffer Hylander. Journal of Biogeography 45 (4), 885-894


    Aim: Dispersal range is a key factor for understanding species' persistence in dynamic landscapes. However, dispersal, especially over long distances, is inherently difficult to study. Making use of a unique system of anthropogenically disturbed, geographically isolated mires, we assessed dispersal ranges for a group of plants restricted to wet calcareous conditions via empirical studies of colonization patterns. We hypothesized that more species would have colonized the less isolated mires and that colonization frequencies would be related to traits influencing propagule pressure. Location: Sweden. Taxon: Calcicolous vascular plants and bryophytes. Methods: The study system consisted of 52 acidic mires that had acquired a high pH through active liming by the Swedish government during the past two decades. These conditions killed off mat-forming peat mosses, rendering the mires open to colonization by other species. In each mire, we recorded the presence of rich fen plant species typically found in high pH wet soils throughout the country. We used citizen science-collected records of occurrences of obligate-rich fen species surrounding each mire to examine the likely dispersal distances that were involved in creating the colonization patterns. Results: A lower proportion of vascular plants than bryophytes from their respective species pools colonized the limed mires (27% vs. 67%, p = .001). The number of colonized rich fen species per site was 0-6 for vascular plants and 10-31 for bryophytes, and was positively related to potential diaspore sources >20km from the mires (p = .026 and p = .012, respectively). The proportion of colonized mires was positively related to the species' regional frequency, but not with their diaspores' terminal velocity. Main conclusions: Many bryophyte species can effectively disperse over long distances (tens of kilometres) and variation among species in total diaspore production seems to be an important regulator of colonization across landscapes, for both vascular plants and bryophytes, in communities that are open to colonization.

    Read more about Calcicolous plants colonize limed mires after long-distance dispersal
  • Disturbance from traditional fire management in subalpine heathlands increases Afro-alpine plant resilience to climate change

    2018. Maria U. Johansson (et al.). Global Change Biology 24 (7), 2952-2964


    Species are often controlled by biotic factors such as competition at the warm edge of their distribution range. Disturbances at the treeline, disrupting competitive dominance, may thus enable alpine species to utilize lower altitudes. We searched for evidence for range expansion in grazed, fire-managed Ethiopian subalpine Erica heathlands across a 25-year chronosequence. We examined vascular plant composition in 48 plots (5x5m) across an altitudinal range of 3,465-3,711m.a.s.l. and analyzed how community composition changed in relation to increasing competition over time (using a Shade index based on Erica shrub height and cover) and altitude. Species habitats and altitudinal ranges were derived from literature. Time since fire explained more variation (r(2)=.41) in species composition than altitude did (r(2)=.32) in an NMDS analysis. Community-weighted altitudinal optima for species in a plot decreased strongly with increasing shade (GLM, Standardized Regression Coefficient SRC=-.41, p=.003), but increased only weakly with altitude (SRC=.26, p=.054). In other words, young stands were dominated by species with higher altitudinal optima than old stands. Forest species richness increased with Log Shade index (SRC=.12, p=.008), but was unaffected by altitude (SRC=-.07, p=.13). However, richness of alpine and heathland species was not highest in plots with lowest Shade index, but displayed a unimodal pattern with an initial increase, followed by a decrease when shading increased (altitude was not significant). Our results indicate that disturbance from the traditional patch burning increases the available habitat for less competitive high-altitude plants and prevents tree line ascent. Therefore, maintaining, but regulating, the traditional land use increases the Afro-alpine flora's resilience to global warming. However, this system is threatened by a new REDD+ program attempting to increase carbon storage via fire suppression. This study highlights the importance of understanding traditional management regimes for biodiversity conservation in cultural landscapes in an era of global change.

    Read more about Disturbance from traditional fire management in subalpine heathlands increases Afro-alpine plant resilience to climate change
  • Reframing the Food-Biodiversity Challenge

    2017. Joern Fischer (et al.). Trends in Ecology & Evolution 32 (5), 335-345


    Given the serious limitations of production-oriented frameworks, we offer here a new conceptual framework for how to analyze the nexus of food security and biodiversity conservation. We introduce four archetypes of social-ecological system states corresponding to win-win (e.g., agroecology), win-lose (e.g., intensive agriculture), lose-win (e.g., fortress conservation), and lose-lose (e.g., degraded landscapes) outcomes for food security and biodiversity conservation. Each archetype is shaped by characteristic external drivers, exhibits characteristic internal social-ecological features, and has characteristic feedbacks that maintain it. This framework shifts the emphasis from focusing on production only to considering social-ecological dynamics, and enables comparison among landscapes. Moreover, examining drivers and feedbacks facilitates the analysis of possible transitions between system states (e.g., from a lose-lose outcome to a more preferred outcome).

    Read more about Reframing the Food-Biodiversity Challenge
  • Waiving the extinction debt

    2017. Kristoffer Hylander, Sileshi Nemomissa. Diversity & distributions 23 (8), 888-897


    AimLocal extinction after habitat modifications is often delayed, leading to an extinction debt. Our first aim was to develop a conceptual model for natural and human-mediated habitat improvements after a disturbance that may waive part of the predicted extinction debt. Second, we wanted to test this model on the distribution of epiphytic plants on trees that had been isolated in the agricultural matrix after forest clearing, around which coffee subsequently had been planted with a possible improvement of the microclimate. LocationBonga, Southern Nations, Nationalities and Peoples Region (SNNPR), Ethiopia. MethodsWe studied 50 trees that had been isolated for periods ranging from a few years to half a century after clearing. The trees were now located in the agricultural landscape at different distances from intact Afromontane forests. Fourteen trees in the forests were used as references. Each tree was inventoried for all vascular epiphytic plants, mosses and liverworts. ResultsTime since clearance had a direct negative effect on number of forest specialist species via delayed extinctions and the detected large extinction debt of both bryophytes and vascular plants continued to be paid over several decades. However, time since clearance had an indirect positive effect on number of forest indicator species via the reappearance of shade from coffee planted surrounding the trees, even if the waiving effect on the extinction debt was rather small. Additionally, trees at further distances from the forest edge had fewer forest-associated species. Main conclusionsOur results show that the ability of agroecological landscapes to foster forest biodiversity may be overestimated if meta-community processes over time and space are not taken into account. However, the possibility of initiating counteracting processes that modify the level of expected local extinctions should be evaluated more often to find ways of improving conditions for biodiversity in human-modified landscapes.

    Read more about Waiving the extinction debt
  • Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection

    2017. Eric Meineri, Kristoffer Hylander. Ecography 40 (8), 1003-1013


    Large-domain species distribution models (SDMs) fail to identify microrefugia, as they are based on climate estimates that are either too coarse or that ignore relevant topographic climate-forcing factors. Climate station data are considered inadequate to produce such estimates, a viewpoint we challenge here. Using climate stations and topographic data, we developed three sets of large-domain (450 000 km(2)), fine-grain (50m) temperature grids accounting for different levels of topographic complexity. Using these fine-grain grids and the Worldclim data, we fitted SDMs for 78 alpine species over Sweden, and assessed over-versus underestimations of local extinction and area of microrefugia by comparing modelled distributions at species' rear edges. Accounting for well-known topographic climate-forcing factors improved our ability to model fine-scale climate, despite using only climate station data. This approach captured the effect of cool air pooling, distance to sea, and relative humidity on local-scale temperature, but the effect of solar radiation could not be accurately accounted for. Predicted extinction rate decreased with increasing spatial resolution of the climate models and with increasing number of topographic climate-forcing factors accounted for. About half of the microrefugia detected in the most topographically complete models were not detected in the coarser SDMs and in the models calibrated from climate variables extracted from elevation only. Although major limitations remain, climate station data can potentially be used to produce fine-grain topoclimate grids, opening up the opportunity to model local-scale ecological processes over large domains. Accounting for the topographic complexity encountered within landscapes permits the detection of microrefugia that would otherwise remain undetected. Topographic heterogeneity is likely to have a massive impact on species persistence, and should be included in studies on the effects of climate change.

    Read more about Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection
  • Microrefugia

    2015. Kristoffer Hylander (et al.). Ambio 44, s60-S68


    Microrefugia are sites that support populations of species when their ranges contract during unfavorable climate episodes. Here, we review and discuss two aspects relevant for microrefugia. First, distributions of different species are influenced by different climatic variables. Second, climatic variables differ in the degree of local decoupling from the regional climate. Based on this, we suggest that only species limited by climatic conditions decoupled from the regional climate can benefit from microrefugia. We argue that this restriction has received little attention in spite of its importance for microrefugia as a mechanism for species resilience (the survival of unfavorable episodes and subsequent range expansion). Presence of microrefugia will depend on both the responses of individual species to local climatic variation and how climate-forcing factors shape the correlation between local and regional climate across space and time.

    Read more about Microrefugia
  • The mechanisms causing extinction debts

    2013. Kristoffer Hylander, Johan Ehrlen. Trends in Ecology & Evolution 28 (6), 341-346


    Extinction debts can result from many types of habitat changes involving mechanisms other than metapopulation processes. This is a fact that most recent literature on extinction debts pays little attention to. We argue that extinction debts can arise because (i) individuals survive in resistant life-cycle stages long after habitat quality change, (ii) stochastic extinctions of populations that have become small are not immediate, and (iii) metapopulations survive long after that connectivity has decreased if colonization-extinction dynamics is slow. A failure to distinguish between these different mechanisms and to simultaneously consider both the size of the extinction debt and the relaxation time hampers our understanding of how extinction debts arise and our ability to prevent ultimate extinctions.

    Read more about The mechanisms causing extinction debts

Show all publications by Kristoffer Hylander at Stockholm University