Profiles

Michael Odelius

Michael Odelius

Professor

View page in English
Arbetar vid Fysikum
Telefon 08-553 787 13
E-post odelius@fysik.su.se
Besöksadress Roslagstullsbacken 21
Rum C4:3039
Postadress Fysikum 106 91 Stockholm

Om mig

Med en bakgrund i fysikalisk kemi, arbetar jag idag med forskning, undervisning och samverkan vid Fysikum. Jag studerar kemiska processer och molekyler med datorsimuleringar baserade på kvantkemiska metoder.

Undervisning

Vid Fysikum på Stockholms universitet har jag de senaste åren haft föreläsningar på en kurs i kvantkemi (FK7059), som vi nyligen omvandlat till en kurs med förinspelade videoföreläsningar och mer aktivt lärande.

Om du är intresserad av ett examensarbete på kanditat- eller masterniv kan du hitta exempel på tidigare arbeten på hemsidan för avdelningen kemisk fysik. Välkommen att kontakta mig om du är nyfiken.

En viktig del i vårt arbete vid sidan av forskning och undervisning är att inspirera unga och stödja deras intresse för fysik, därför har vi skapat olika kontaktytor för skolor och allmänheten som våra öppna föreläsningar, evenemanget Fysik i Kungsträdgården och de senaste åren, Forskarfredag.

Forskning

Fotoaktiveringen av järnpentakarbonyl har studerats med hjälp av en röntgenlaser som avbildar elektronstrukturen. Det fotoaktiverade komplexet avger av en karbonylgrupp. Nature 520,78–81 (02 April 2015). Copyright: SLAC National Accelerator Laboratory.
Fotoaktiveringen av järnpentakarbonyl har studerats med hjälp av en röntgenlaser som avbildar elektronstrukturen. Det fotoaktiverade komplexet avger av en karbonylgrupp. Nature 520,78–81 (02 April 2015). Copyright: SLAC National Accelerator Laboratory.

Vi använder teoretiska beräkningar baserade på kvantmekanik och statistisk fysik för att studera vätskor och solceller. Med dessa metoder studerar vi elektronstruktur och molekyldynamik på molekylär nivå. Genom datorsimuleringar kan vi i nära samarbete med experiment ge en detaljförståelse av komplicerade system, och exempelvis bidra till utvecklingen av effektivare kemisk lagring av solenergi.

På forskningsgruppens hemsida kan du läsa mer om pågående forskningsprojekt, och hitta exempel på tidigare publikationer.

 

Publikationer

I urval från Stockholms universitets publikationsdatabas
  • 2010. Minbiao Ji, Michael Odelius, K J Gaffney. Science (New York, N.Y.) 328 (5981), 1003-5

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO4 solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extracted an average jump angle of 49 +/- 4 degrees, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO4 solution.

  • 2015. Philippe Wernet (et al.). Nature 520 (7545), 78-81

    Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 insolution, that the photoinduced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

  • 2015. Rebecka Lindblad (et al.). The Journal of Physical Chemistry C 119 (4), 1818-1825

    A combination of measurements using photoelectron spectroscopy and calculations using density functional theory (DFT) was applied to compare the detailed electronic structure of the organolead halide perovskites CH3NH3PbI3 and CH3NH3PbBr3. These perovskite materials are used to absorb light in mesoscopic and planar heterojunction solar cells. The Pb 4f core level is investigated to get insight into the chemistry of the two materials. Valence level measurments are also included showing a shift of the valence band edges where there is a higher binding energy of the edge for the CH3NH3PbBr3 perovskite. These changes are supported by the theoretical calculations which indicate that the differences in electronic structure are mainly caused by the nature of the halide ion rather than structural differences. The combination of photoelectron spectroscopy measurements and electronic structure calculations is essential to disentangle how the valence band edge in organolead halide perovskites is governed by the intrinsic difference in energy levels of the halide ions from the influence of chemical bonding.

  • 2017. Rafael C. Couto (et al.). Nature Communications 8

    The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.

Visa alla publikationer av Michael Odelius vid Stockholms universitet

Senast uppdaterad: 2 oktober 2018

Bokmärk och dela Tipsa